Today

- Uninformed search: summary
- Informed search,
- Search Heuristics

See Russell and Norvig, Chapters 3,4

Graph search

The state space with actions leading from state to state corresponds naturally to a graph rather than a tree; the state appears only once in the graph.

There are data structures corresponding to graphs, and graph search algorithms that avoid repetition of states already seen.
The idea is to keep track of nodes that have already been expanded; if search arrives back at such a node, it is ignored in future search.
See Russell and Norvig for details.

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes*	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	$b m$	$b l$	$b d$
Optimal?	Yes*	Yes*	No	No	Yes

Here * indicates conditions stated earlier.
$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Oct 8, 2007

informárontics

Informed search strategies

Informed strategies use heuristic "rule of thumb" ideas to guide search based on some estimation of where the solution is most likely to be found.
We look at some such strategies:

- Best-first search
- A* search
- Heuristics

Reminder: Searching a Tree

function Tree-SEARCH (problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front(fringe)
if Goal-Test [problem] applied to State(node) succeeds return node
fringe $\leftarrow \operatorname{InsertALL}(\operatorname{Expand}($ node, problem $)$, fringe)

A strategy is defined by picking the order of node expansion

informatron oftics

Romania with step costs in km

Use a straight line heuristic: distance to goal in straight line.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
\Rightarrow Expand most desirable unexpanded node
Implementation:
fringe is a queue sorted in decreasing order of desirability
Special cases:
greedy search
A* search

Alan Smaill	Fundamentals of Artificial Intelligence	Oct 8, 2007

$\longrightarrow 8$ informatics

Greedy search

Evaluation function $h(n)$ (heuristic)
$=$ estimate of cost from n to the closest goal
E.g., $h_{\mathrm{SLD}}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal prefer the action that takes us to the state with the minimum heuristic cost.

Example: Romania

$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Oct 8, 2007
${ }_{11}$ informatics
Greedy search example

Greedy search example
$D \frac{\text { Arad }}{366}$

Greedy search example

Greedy search example

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time??
$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Oct 8, 2007

is informatics

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$ —keeps all nodes in memory
Optimal??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$-keeps all nodes in memory
Optimal?? No

Alan Smaill

A* search

A* search has a very good property:
A^{*} search is optimal!
So if there is any solution, A^{*} search is guaranteed to find a least cost solution. Remember, this needs an admissible heuristic.

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal
A* search uses an admissible heuristic, i.e.

$$
h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost of cheapest solution from n. (Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.)
E.g., $h_{\text {SLD }}(n)$ never overestimates the actual road distance.
$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Oct 8, 2007

A* search example

$D \underbrace{\text { Arad }}_{366=0+366}$

A* search example

A* search example

A* search example

A* search example

A* search example

$\overline{\text { Alan Smaill }}$

Optimality of \mathbf{A}^{*} (more useful)

Lemma: A* expands nodes in order of increasing f value
Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Optimality of \mathbf{A}^{*} (standard proof)

Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

Then:

$$
f\left(G_{2}\right)=g\left(G_{2}\right) \text { since } h\left(G_{2}\right)=0
$$

$>g\left(G_{1}\right)$ since G_{2} is suboptimal
$\geq f(n)$ since h is admissible
Since $f\left(G_{2}\right)>f(n)$, A^{*} will never select G_{2} for expansion.

Alan Smaill
Fundamentals of Artificial Intelligence
Oct 8, 2007

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space??

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

$$
\begin{aligned}
& h_{1}(S)=? ? \\
& h_{2}(S)=? ?
\end{aligned}
$$

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f_{i+1} until f_{i} is finished
A* expands all nodes with $f(n)<C^{*}$
A* expands some nodes with $f(n)=C^{*}$
A* expands no nodes with $f(n)>C^{*}$
$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Oct 8, 2007

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

$h_{1}(S)=$?? 6
$h_{2}(S)=? ? \quad 4+0+3+3+1+0+2+1=14$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible)
then h_{2} dominates h_{1} and is better for search
Typical search costs for solution at length d :

$$
\begin{array}{ll}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \text { IDS } \approx 54,000,000,000 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem
If the rules of the 8 -puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution
Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

${ }_{35}$ informatics

Summary

Work with an evaluation function for each node

- Greedy search algorithms - go for most desirable node
- A^{*} search using an admissible heuristic function
- A^{*} is optimal search strategy
- Heuristics for the eight puzzle

