
1

Today

• Uninformed search: summary

• Informed search,

• Search Heuristics

See Russell and Norvig, Chapters 3,4

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

2

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes

Time bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes∗ No No Yes

Here ∗ indicates conditions stated earlier.

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

3

Graph search
The state space with actions leading from state to state corresponds naturally to
a graph rather than a tree; the state appears only once in the graph.

There are data structures corresponding to graphs, and graph search algorithms
that avoid repetition of states already seen.

The idea is to keep track of nodes that have already been expanded; if search
arrives back at such a node, it is ignored in future search.

See Russell and Norvig for details.

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

4

Informed search strategies
Informed strategies use heuristic “rule of thumb” ideas to guide search based on
some estimation of where the solution is most likely to be found.

We look at some such strategies:

• Best-first search

• A∗ search

• Heuristics

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

5

Reminder: Searching a Tree

function Tree-Search(problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

6

Best-first search
Idea: use an evaluation function for each node

– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

7

Romania with step costs in km
Use a straight line heuristic: distance to goal in straight line.

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Dobreta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329

80
199

380
234

374

100
193

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

8

Greedy search
Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal
prefer the action that takes us to the state with the minimum heuristic cost.

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

9

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

10

Greedy search example

Arad

366

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

11

Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

12

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

13

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

14

Properties of greedy search
Complete?? No–can get stuck in loops, e.g., with Oradea as goal,

Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time??

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

15

Properties of greedy search
Complete?? No–can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

16

Properties of greedy search
Complete?? No–can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal??

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

17

Properties of greedy search
Complete?? No–can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

18

A∗ search
Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic, i.e.

h(n) ≤ h∗(n)

where h∗(n) is the true cost of cheapest solution from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance.

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

19

A∗ search
A∗ search has a very good property:

A∗ search is optimal!

So if there is any solution, A∗ search is guaranteed to find a least cost solution.

Remember, this needs an admissible heuristic.

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

20

A∗ search example

Arad

366=0+366

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

21

A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

22

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

23

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

24

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

25

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

26

Optimality of A∗ (standard proof)
Suppose some suboptimal goal G2 has been generated and is in the queue. Let
n be an unexpanded node on a shortest path to an optimal goal G1.

G1

n

G2

Start

Then:

f(G2) = g(G2) since h(G2) = 0
> g(G1) since G2 is suboptimal
≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion.

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

27

Optimality of A∗ (more useful)
Lemma: A∗ expands nodes in order of increasing f value

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

28

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time??

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

29

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space??

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

30

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

31

Admissible heuristics
E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

32

Admissible heuristics
E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

33

Dominance
If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs for solution at length d:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

34

Relaxed problems
Admissible heuristics can be derived from the exact

solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then
h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

35

Summary
Work with an evaluation function for each node

• Greedy search algorithms – go for most desirable node

• A∗ search using an admissible heuristic function

• A∗ is optimal search strategy

• Heuristics for the eight puzzle

Alan Smaill Fundamentals of Artificial Intelligence Oct 8, 2007

