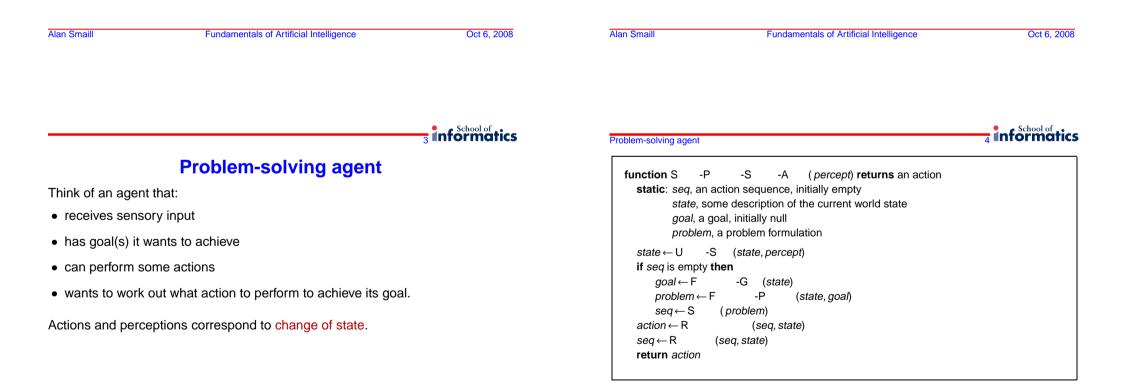
informatics


Admin

Tutorials start this week;

See information from ITO; tutorial groups linked to FAI web page.

- Problem solving agents
- State spaces and search trees
- Components of general state space search algorithm

See Russell and Norvig, Chapter 3.

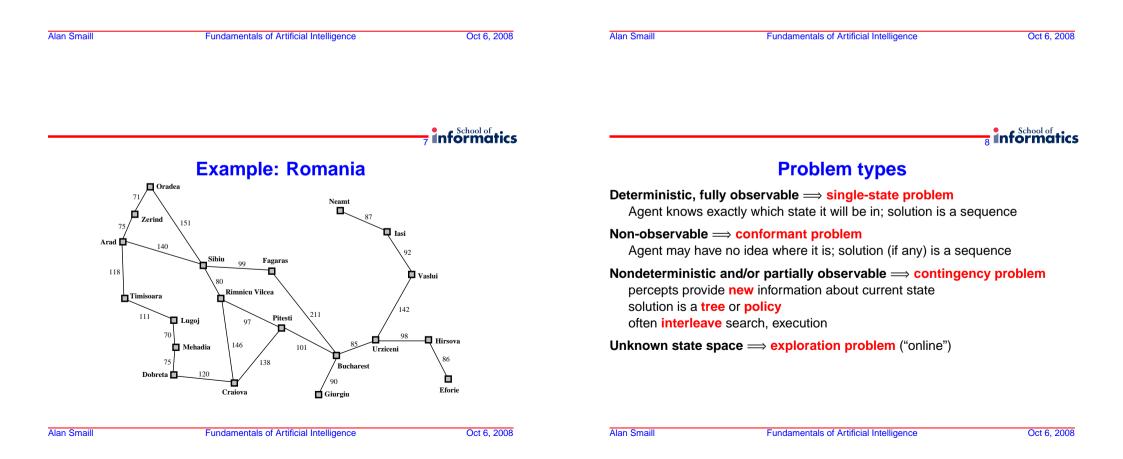
informatics

informatics

Problem-solving agent

This is a restricted form of general agent.

Note: this is **offline** problem solving; solution executed "eyes closed." **Online** problem solving involves acting without complete knowledge.


Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest **Formulate goal**: be in Bucharest **Formulate problem**:

states: various cities

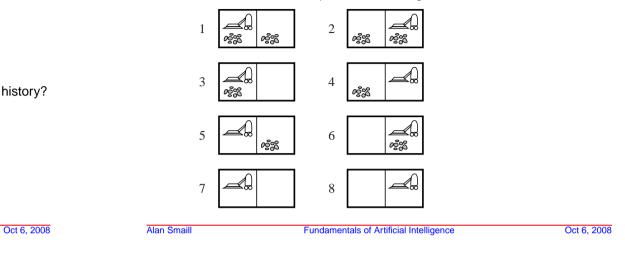
actions: drive between cities

Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

informatics

Example

Take for vacuum cleaner:

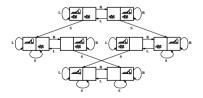

- Percepts: location and contents, e.g., [A, Dirty]
- Actions: Left, Right, Suck, NoOp

What is the **right** way to organise the actions dependent on the percept history?

Fundamentals of Artificial Intelligence

Example: vacuum world

What are the possible states, given two rooms?



12 informatics

Example: vacuum world

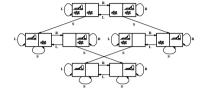
Single-state, start in #5. <u>Solution</u>?? [*Right,Suck*]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8} e.g., *Right* goes to {2, 4, 6, 8}. <u>Solution</u>??

10 Informatics

Alan Smaill

Oct 6, 2008

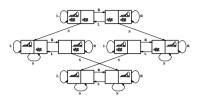

a informatics

Example: vacuum world

Single-state, start in #5. <u>Solution</u>?? [*Right*, *Suck*]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8} e.g., *Right* goes to {2, 4, 6, 8}. <u>Solution</u>?? [*Right*,*Suck*,*Left*,*Suck*]

Contingency, start in #5 Murphy's Law: *Suck* can dirty a clean carpet Local sensing: dirt, location only. <u>Solution</u>??



Example: vacuum world

Single-state, start in #5. <u>Solution</u>?? [*Right,Suck*]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8} e.g., *Right* goes to {2, 4, 6, 8}. <u>Solution</u>?? [*Right*,*Suck*,*Left*,*Suck*]

Contingency, start in #5 Murphy's Law: *Suck* can dirty a clean carpet Local sensing: dirt, location only. <u>Solution</u>?? [*Right*,**if** *dirt* **then** *Suck*]

Alan Smaill

Fundamentals of Artificial Intelligence

Oct 6, 2008

15 informatics

Single-state problem formulation

A problem is defined by four items:

initial state e.g., "at Arad"

successor function S(x) = set of action–state pairs e.g., $S(Arad) = \{\langle Arad \rightarrow Zerind, Zerind \rangle, ...\}$

goal test, can be

explicit, e.g., x = "at Bucharest"
implicit, e.g., NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

16 informatics

Oct 6, 2008

Selecting a state space

Fundamentals of Artificial Intelligence

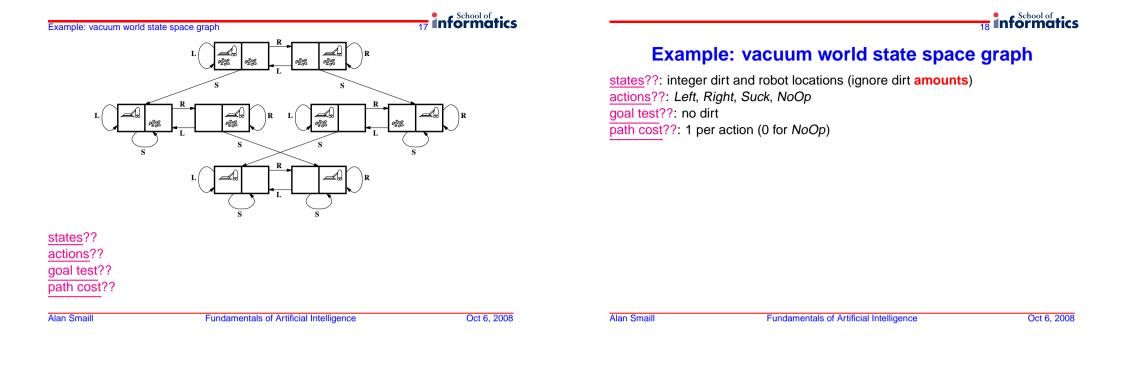
Real world is absurdly complex

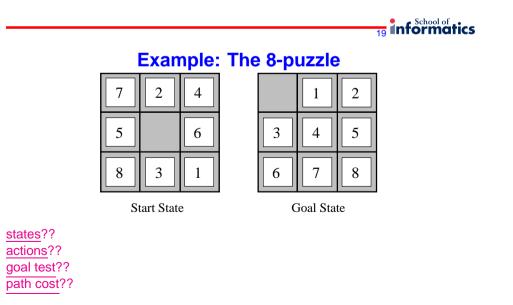
 \Rightarrow state space must be **abstracted** for problem solving

(Abstract) state = set of real states

 (Abstract) action = complex combination of real actions e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
 For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"

(Abstract) solution =

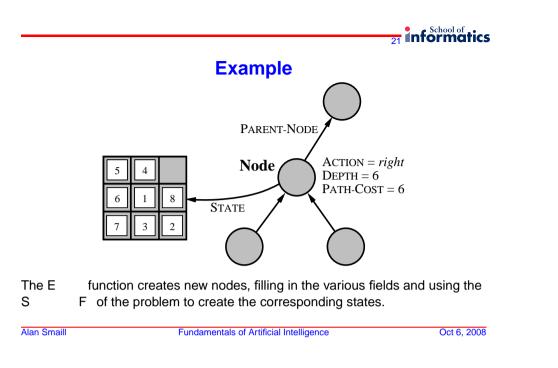

set of real paths that are solutions in the real world


Each abstract action should be "easier" than the original problem!

Oct 6, 2008

Alan Smaill

Alan Smaill



Trees and states

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes parent, children, depth, path cost
States do not have parents, children, depth, or path cost!

	22 Inform	шн
unction T -S (proble	em, fringe) returns a solution, or failure	
fringe ← I (M -N ((I -S [problem]), fringe)	
loop do		
if fringe is empty then	return failure	
$node \leftarrow R -F$ (2)	fringe)	
if G -T [problem] a	applied to S (node) succeeds return node	
fringe ← I A (E	(node, problem), fringe)	
s ← a new N P -N [s] ← node	G -F [problem](S [node]) do r; A [s] ← action; S [s] ← result [node] + S -C (node, action, s)	

23 Informatics

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions: completeness—does it always find a solution if one exists? time complexity—number of nodes generated/expanded space complexity—maximum number of nodes in memory optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of

- *b*—maximum branching factor of the search tree
- *d*—depth of the least-cost solution
- *m*—maximum depth of the state space (may be infinite)

24 informatics

6 1 1 6

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition Breadth-first search Uniform-cost search Depth-first search Depth-limited search Iterative deepening search We'll look at these in the next lecture.

Summary

- Problem solving agents
- State spaces and search trees
- Components of general state space search algorithm

Alan Smaill Fundamentals of Artificial Intelligence

Oct 6, 2008