Today

- Recursive algorithms
- Efficiency of recursion

See Aho, Hopcraft and Ullman, "Data structures and Algorithms", chapters 1,2. Acknowledgements to Chris Mellish for slides.

${\it O}(.)$ notation: official definition

For the record, the official definition of when a function T(n) is in the class O(f(n)) is as follows: T(n) is in O(f(n)) means that:

there are numbers k, n_0 such that for all $n > n_0, \ T(n) \le k.f(n)$

It follows that $1000 + 67x^2 + 45x^3$ is in $O(x^3)$ (there is a bit of work to do here).

Termination

How can we work out if a recursive algorithm terminates (i.e. stops and returns an answer)?

- There must be at least one base case, and recursion must eventually use one of them.
- The recursive sub-problem must be "smaller" than the original.
- show termination by
 - measuring complexity (e.g. by size of input)
 - showing complexity gets smaller in each recursive call
 - showing that it can't get smaller indefinitely, without hitting a base case.

Alan Smaill	Fundamentals of Artificial Intelligence

informatics

Oct 2, 2008

Execution ctd

This is roughly how such programs are executed:

a single computer keeps track of the different memories and executions.

Notice that each successive call to the procedure involves a different set of inputs, and the execution has to keep track of how these fit together.

This is an overhead, but it does not affect the the time complexity of execution.

Execution

Imagine a crowd of people executing the algorithm.

- The first person gets the original inputs (and program), and follows the algorithm, until
- when the algorithm is called again, they
 - find an unoccupied person
 - give them the subproblem, and copy of the algorithm
 - get back the answer from them
 - continue with the algorithm
- Finally, the first person hands over the answer.

Each occupied person has own memory, and record of where they are in the algorithm.

A	an	S	ma
		_	

Fundamentals of Artificial Intelligence

Oct 2, 2008

nformatics

informatics

Smallest at work

P1(S,L)	P2(S,L)	P3(S,L)	P4(S,L)
>[8,4,5,9]			
	>[4,5,9]		
		>[5,9]	
	• • •		>[9]
			<9
		<5	
	<4		
<4			

where ". . . " indicates waiting.

Complexity of recursive algorithm

- Use the notation Cost(n) to represent the complexity of the algorithm with input of size n.
- Derive an equation for Cost(n) in terms of Cost(n-1) (or the appropriate notion of "smaller"), using the algorithm definition (indicate presence of constants).
- Solve the equation for Cost(n) (ask a mathematician . . .)

Analysing Smallest

- The algorithm hits a base case (constant complexity) or a recursive subgoal (input size n-1) with some constant work:
- For the recursive case, we get Cost(n) = k + Cost(n-1)
- So:

Cost(n) = k + Cost(n-1)= k + k + Cost(n-2) = ... = n × k + Cost(0)

• So the complexity is linear: the algorithm is O(n).

Oct 2, 2008	Alan Smaill	Fundamentals of Artificial Intelligence	Oct 2, 2008

nformatics

Empirical test

Fundamentals of Artificial Intelligence

We can program "smallest" in our favourite programming language, and try running it on different sizes of lists, measuring the time taken.

Look at the plotted times as a function of list size (use random lists with entries from suitable range). We see that:

- there is fluctuation in time in actual execution
- times are bounded by a linear function $k_1x + k_2$
- our analysis is only as good as our various simplifying assumptions about unit steps, etc; this is only an approximation, but it is useful.

Alan Smail

14 informatics

Example: Reversing a list I

To reverse list L:

If L is NIL return NIL and stop
Otherwise
Let Sub be the reverse of the rest of L
Let Little be a new list pair
Set the first of Little to the first of L
Set the rest of Little to NIL
Let Res be the result of appending Sub to Little

We assume we have a procedure for appending one list to another (tacking one list in front of another) that has linear complexity.

Simulation

P1(L,Sub,Res)	P2(L,Sub,Res)	P3(L,Sub,Res)	P4(L,Sub,Res)
>[a,b,c]			
	>[b,c]		
		>[c]	
			>[]
			<[]
		<[c]	
	<[c,b]		
<[c,b,a]			

18 informatics

Data representation

We can use a binary tree structure with labelled nodes.

Such a tree is

- Either a leaf node on its own, labelled with a simple test, or
- it is a tree with two sub-trees, labelled with a connective ("and"," or").

The primitive operations are:

- forming a tree from two trees and a connective
- deciding if a tree is a leaf, or has sub-trees
- accessing the test identity from a leaf
- accessing connective and subtrees from an internal node.

Alan Smain Fundamentals of Artificial Intelligence Oct 2, 2006	Alan Smain Fundamentals of Artificial Intelligence Oct 2, 200
19 informatics	20 information
Evaluating a test	Complexity of test evaluation
To evaluate test T: If T is a leaf determine test and look up test result Otherwise Let L be result of evaluating left of T Let R be result of evaluating right of T If connective of T is AND If both L and R are TRUE, return TRUE Otherwise return FALSE Otherwise (so connective is OR) If one of L or R is TRUE, return TRUE Otherwise return FALSE	 Measure complexity of test as number of connectives and test expressions together base case is constant work Recursive case involves constant work + 2 recursive calls. The two recursive calls together involve n - 1 connective and test expressions. Cost(n) = k₁ + Cost(n - 1 - k₂) + Cost(k₂) Cost(n) = k₃ + n solves this (whatever k₂ is) Complexity is linear

Examp	le t	tree	:

	AN	D	
OR		0	\mathbf{R}
AND	windy	humid	overcast
rain warm			

Tractability

Some algorithms are intractable;

they need so much resource in terms of time (or space) that it is not practical to use them to solve big problems.

Often the cut-off point is characterised as follows:

Tractable = *Polynomial time computable*

Note that if we want real time computation, we will probably want to look a lot lower in the hierarchy.

Exponential time computation (or worse) is definitely bad, though.

Summary

- Recursive algorithms
- Estimating time complexity
- Tree data structure

Alan Smaill

Fundamentals of Artificial Intelligence

Oct 2, 2008

Alan Smaill

Fundamentals of Artificial Intelligence

Oct 2, 2008