
1

Today

• Recursive algorithms

• Efficiency of recursion

See Aho, Hopcraft and Ullman, “Data structures and Algorithms”, chapters 1,2.

Acknowledgements to Chris Mellish for slides.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

2

O(.) notation: official definition

For the record, the official definition of
when a function T (n) is in the class O(f(n)) is as follows:

T (n) is in O(f(n)) means that:

there are numbers k, n0 such that for all n > n0, T (n) ≤ k.f(n)

It follows that 1000 + 67x2 + 45x3 is in O(x3)
(there is a bit of work to do here).

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

3

Smallest element of a list

Recall basic (1 step) operations on lists:

• Is the list empty?

• Get the first element, get the rest of the list

• Build a new list by tacking a new element on front of a list

Also arithmetic comparison (=, <, . . .) treated as single step.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

4

Pseudo Code

To find smallest element of list L:

If L is NIL, return NIL and stop

Otherwise if the rest of L is NIL

return the first of L and stop

Otherwise let S be smallest element of the rest of L

If S is less than the first element of L

return S and stop

Otherwise

return the first element of L

Note recursive case:

S be smallest element of the rest of L.

and two base cases. This may not be the most efficient way to solve the problem!

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

5

Termination

How can we work out if a recursive algorithm terminates
(i.e. stops and returns an answer)?

• There must be at least one base case, and recursion must eventually use one
of them.

• The recursive sub-problem must be “smaller” than the original.

• show termination by
– measuring complexity (e.g. by size of input)
– showing complexity gets smaller in each recursive call
– showing that it can’t get smaller indefinitely, without hitting a base case.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

6

Execution

Imagine a crowd of people executing the algorithm.

• The first person gets the original inputs (and program), and follows the
algorithm, until

• when the algorithm is called again, they
– find an unoccupied person
– give them the subproblem, and copy of the algorithm
– get back the answer from them
– continue with the algorithm

• Finally, the first person hands over the answer.

Each occupied person has own memory, and record of where they are in the
algorithm.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

7

Execution ctd

This is roughly how such programs are executed:
a single computer keeps track of the different memories and executions.

Notice that each successive call to the procedure involves a different set of
inputs, and the execution has to keep track of how these fit together.

This is an overhead, but it does not affect the the time complexity of execution.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

8

Smallest at work

P1(S,L) P2(S,L) P3(S,L) P4(S,L)
>[8,4,5,9]
. . . >[4,5,9]
. >[5,9]
. >[9]
. <9
. <5
. . . <4
<4

where “. . . ” indicates waiting.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

9

Complexity of recursive algorithm

• Use the notation Cost(n) to represent the complexity of the algorithm with
input of size n.

• Derive an equation for Cost(n) in terms of Cost(n − 1) (or the appropriate
notion of “smaller”), using the algorithm definition (indicate presence of
constants).

• Solve the equation for Cost(n) (ask a mathematician . . .)

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

10

Analysing Smallest
• The algorithm hits a base case (constant complexity) or a recursive subgoal

(input size n − 1) with some constant work:

• For the recursive case, we get Cost(n) = k + Cost(n − 1)

• So:

Cost(n) = k + Cost(n − 1)

= k + k + Cost(n − 2)

= . . .

= n × k + Cost(0)

• So the complexity is linear: the algorithm is O(n).

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

11

Empirical test

We can program “smallest” in our favourite programming language, and try
running it on different sizes of lists, measuring the time taken.

Look at the plotted times as a function of list size (use random lists with entries
from suitable range). We see that:

• there is fluctuation in time in actual execution

• times are bounded by a linear function k1x + k2

• our analysis is only as good as our various simplifying assumptions about unit
steps, etc; this is only an approximation, but it is useful.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

timings for two runs of “smallest” 12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200

T
im

e
to

 fi
nd

 m
in

im
um

Size of list (in 1000s)

times1
times2

y=k1.x + k2

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

13

Example: Reversing a list l

To reverse list L:

If L is NIL return NIL and stop

Otherwise

Let Sub be the reverse of the rest of L

Let Little be a new list pair

Set the first of Little to the first of L

Set the rest of Little to NIL

Let Res be the result of appending Sub to Little

We assume we have a procedure for appending one list to another (tacking one
list in front of another) that has linear complexity.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

14

Simulation

P1(L,Sub,Res) P2(L,Sub,Res) P3(L,Sub,Res) P4(L,Sub,Res)
>[a,b,c]
. . . >[b,c]
. >[c]
. >[]
. <[]
. <[c]
. . . <[c,b]
<[c,b,a]

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

15

Complexity

• Base case is constant complexity

• Recursive case involves constant + linear + recursion

• Cost(n) = k + (n − 1) + Cost(n − 1)

• Cost(n) = k × n + (n − 1) + (n − 2) + · · · + 1 + 0 + Cost(0)

• Complexity is quadratic

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

16

More complex Recursions

Often the structure of a recursion follows the structure of the data it operates on
(lists,trees).

For example: we can represent a complex truth condition using “and”, “or” and
simple tests:

and(or(and(raining,warm),windy),or(humid,overcast))

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

17

Data representation

We can use a binary tree structure with labelled nodes.

Such a tree is

• Either a leaf node on its own, labelled with a simple test, or

• it is a tree with two sub-trees, labelled with a connective (“and”,”or”).

The primitive operations are:

• forming a tree from two trees and a connective

• deciding if a tree is a leaf, or has sub-trees

• accessing the test identity from a leaf

• accessing connective and subtrees from an internal node.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

18

Example tree

AND
hhhhhhhh

((((((((

OR
X

X
X

XX

�
�

�
��

AND
a

a
a

!
!

!

rain warm

windy

OR
P

P
P

P

�
�

�
�

humid overcast

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

19

Evaluating a test

To evaluate test T:

If T is a leaf

determine test and look up test result

Otherwise

Let L be result of evaluating left of T

Let R be result of evaluating right of T

If connective of T is AND

If both L and R are TRUE, return TRUE

Otherwise return FALSE

Otherwise (so connective is OR)

If one of L or R is TRUE, return TRUE

Otherwise return FALSE

Assumes that tests are easily looked up. Try simulating this on the example tree.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

20

Complexity of test evaluation

• Measure complexity of test as number of connectives and test expressions
together

• base case is constant work

• Recursive case involves constant work + 2 recursive calls. The two recursive
calls together involve n − 1 connective and test expressions.

• Cost(n) = k1 + Cost(n − 1 − k2) + Cost(k2)

• Cost(n) = k3 + n solves this (whatever k2 is)

• Complexity is linear

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

21

Tractability

Some algorithms are intractable;
they need so much resource in terms of time (or space) that it is not practical to
use them to solve big problems.

Often the cut-off point is characterised as follows:

Tractable = Polynomial time computable

Note that if we want real time computation, we will probably want to look a lot
lower in the hierarchy.

Exponential time computation (or worse) is definitely bad, though.

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

22

Summary

• Recursive algorithms

• Estimating time complexity

• Tree data structure

Alan Smaill Fundamentals of Artificial Intelligence Oct 2, 2008

