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Today

• Recursive algorithms

• Efficiency of recursion

See Aho, Hopcraft and Ullman, “Data structures and Algorithms”, chapters 1,2.

Acknowledgements to Chris Mellish for slides.
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O(.) notation: official definition

For the record, the official definition of
when a function T (n) is in the class O(f(n)) is as follows:

T (n) is in O(f(n)) means that:

there are numbers k, n0 such that for all n > n0, T (n) ≤ k.f(n)

It follows that 1000 + 67x2 + 45x3 is in O(x3)
(there is a bit of work to do here).
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Smallest element of a list

Recall basic (1 step) operations on lists:

• Is the list empty?

• Get the first element, get the rest of the list

• Build a new list by tacking a new element on front of a list

Also arithmetic comparison (=, <, . . . ) treated as single step.
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Pseudo Code

To find smallest element of list L:

If L is NIL, return NIL and stop

Otherwise if the rest of L is NIL

return the first of L and stop

Otherwise let S be smallest element of the rest of L

If S is less than the first element of L

return S and stop

Otherwise

return the first element of L

Note recursive case:

S be smallest element of the rest of L.

and two base cases. This may not be the most efficient way to solve the problem!
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Termination

How can we work out if a recursive algorithm terminates
(i.e. stops and returns an answer)?

• There must be at least one base case, and recursion must eventually use one
of them.

• The recursive sub-problem must be “smaller” than the original.

• show termination by
– measuring complexity (e.g. by size of input)
– showing complexity gets smaller in each recursive call
– showing that it can’t get smaller indefinitely, without hitting a base case.
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Execution

Imagine a crowd of people executing the algorithm.

• The first person gets the original inputs (and program), and follows the
algorithm, until

• when the algorithm is called again, they
– find an unoccupied person
– give them the subproblem, and copy of the algorithm
– get back the answer from them
– continue with the algorithm

• Finally, the first person hands over the answer.

Each occupied person has own memory, and record of where they are in the
algorithm.
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Execution ctd

This is roughly how such programs are executed:
a single computer keeps track of the different memories and executions.

Notice that each successive call to the procedure involves a different set of
inputs, and the execution has to keep track of how these fit together.

This is an overhead, but it does not affect the the time complexity of execution.
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Smallest at work

P1(S,L) P2(S,L) P3(S,L) P4(S,L)
>[8,4,5,9]
. . . >[4,5,9]
. . . . . . >[5,9]
. . . . . . . . . >[9]
. . . . . . . . . <9
. . . . . . <5
. . . <4
<4

where “. . . ” indicates waiting.
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Complexity of recursive algorithm

• Use the notation Cost(n) to represent the complexity of the algorithm with
input of size n.

• Derive an equation for Cost(n) in terms of Cost(n − 1) (or the appropriate
notion of “smaller”), using the algorithm definition (indicate presence of
constants).

• Solve the equation for Cost(n) (ask a mathematician . . . )
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Analysing Smallest
• The algorithm hits a base case (constant complexity) or a recursive subgoal

(input size n − 1) with some constant work:

• For the recursive case, we get Cost(n) = k + Cost(n − 1)

• So:

Cost(n) = k + Cost(n − 1)

= k + k + Cost(n − 2)

= . . .

= n × k + Cost(0)

• So the complexity is linear: the algorithm is O(n).
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Empirical test

We can program “smallest” in our favourite programming language, and try
running it on different sizes of lists, measuring the time taken.

Look at the plotted times as a function of list size (use random lists with entries
from suitable range). We see that:

• there is fluctuation in time in actual execution

• times are bounded by a linear function k1x + k2

• our analysis is only as good as our various simplifying assumptions about unit
steps, etc; this is only an approximation, but it is useful.
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Example: Reversing a list l

To reverse list L:

If L is NIL return NIL and stop

Otherwise

Let Sub be the reverse of the rest of L

Let Little be a new list pair

Set the first of Little to the first of L

Set the rest of Little to NIL

Let Res be the result of appending Sub to Little

We assume we have a procedure for appending one list to another (tacking one
list in front of another) that has linear complexity.
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Simulation

P1(L,Sub,Res) P2(L,Sub,Res) P3(L,Sub,Res) P4(L,Sub,Res)
>[a,b,c]
. . . >[b,c]
. . . . . . >[c]
. . . . . . . . . >[ ]
. . . . . . . . . <[ ]
. . . . . . <[c]
. . . <[c,b]
<[c,b,a]
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Complexity

• Base case is constant complexity

• Recursive case involves constant + linear + recursion

• Cost(n) = k + (n − 1) + Cost(n − 1)

• Cost(n) = k × n + (n − 1) + (n − 2) + · · · + 1 + 0 + Cost(0)

• Complexity is quadratic
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More complex Recursions

Often the structure of a recursion follows the structure of the data it operates on
(lists,trees).

For example: we can represent a complex truth condition using “and”, “or” and
simple tests:

and(or(and(raining,warm),windy),or(humid,overcast))
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Data representation

We can use a binary tree structure with labelled nodes.

Such a tree is

• Either a leaf node on its own, labelled with a simple test, or

• it is a tree with two sub-trees, labelled with a connective (“and”,”or”).

The primitive operations are:

• forming a tree from two trees and a connective

• deciding if a tree is a leaf, or has sub-trees

• accessing the test identity from a leaf

• accessing connective and subtrees from an internal node.
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Example tree
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Evaluating a test

To evaluate test T:

If T is a leaf

determine test and look up test result

Otherwise

Let L be result of evaluating left of T

Let R be result of evaluating right of T

If connective of T is AND

If both L and R are TRUE, return TRUE

Otherwise return FALSE

Otherwise (so connective is OR)

If one of L or R is TRUE, return TRUE

Otherwise return FALSE

Assumes that tests are easily looked up. Try simulating this on the example tree.
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Complexity of test evaluation

• Measure complexity of test as number of connectives and test expressions
together

• base case is constant work

• Recursive case involves constant work + 2 recursive calls. The two recursive
calls together involve n − 1 connective and test expressions.

• Cost(n) = k1 + Cost(n − 1 − k2) + Cost(k2)

• Cost(n) = k3 + n solves this (whatever k2 is)

• Complexity is linear
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Tractability

Some algorithms are intractable;
they need so much resource in terms of time (or space) that it is not practical to
use them to solve big problems.

Often the cut-off point is characterised as follows:

Tractable = Polynomial time computable

Note that if we want real time computation, we will probably want to look a lot
lower in the hierarchy.

Exponential time computation (or worse) is definitely bad, though.
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Summary

• Recursive algorithms

• Estimating time complexity

• Tree data structure
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