
1

Today

• Efficiency of Algorithms

• Complexity classes

See Russell and Norvig, appendix A; a fuller account is in Aho, Hopcraft and
Ullman, “Data structures and Algorithms”, chapter 1.

Acknowledgements to Chris Mellish for slides.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

2

Measuring Efficiency

Want a measure that is independent of
– which inputs are provided
– the hardware that is used.

The standard approach measures complexity in terms of

• a function which for a given input of size n gives the number of operations in
the worst case; and

• that function being approximated by something giving the right order of
magnitude.

How does the work scale up as the input gets more complex?

Here look just at time (not space) and a single input only.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

3

Some functions of n

loge(n) 0 0.7 2.3 3 4.6 6.9

n 1 2 10 2 × 10 1 × 102 1 × 103

n2 1 4 102 2 × 102 1 × 104 1 × 106

n3 1 8 103 8 × 103 1 × 106 1 × 109

100n3 102 8 × 102 105 8 × 105 1 × 108 1 × 1011

n4 1 16 104 2 × 105 1 × 108 1 × 1012

n25 1 3 × 1027 1025 3 × 1032 1 × 1050 1 × 1075

1000n25 103 3 × 1030 1028 3 × 1035 1 × 1053 1 × 1078

2n 2 4 103 1 × 106 1 × 1030 1 × 10301

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

Plot some graphs 4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1  2  3  4  5  6  7  8  9  10

f(
n)

n

x^2
100x^2

2^x

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008



Scaling up 5

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 2  4  6  8  10  12  14  16  18  20

f(
n)

n

x^2
100x^2

2^x

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

6

Ranking of Functions of n
k
log(n)
n
n2

n3

. . .
2n

. . .

Given a large enough n, a high function will always dominate a lower one.
– Multiplying by a constant makes no difference
– The sum of two functions behaves like the higher one.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

7

Complexity Classes

• constant – the amount of work does not depend on n

• logarithmic – the amount of work behaves like logk(n) for some constant k

• polynomial – the amount of work behaves like nk, for some constant k.
More precisely, distinguish cases linear (k = 1), quadratic (k = 2), cubic

(k = 3), . . .

• exponential – the amount of work behaves like kn, for some constant k.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

8

Orders of Magnitude

• Imagine a function that in the worst case takes 200 + 78n2 + 12n3 steps.

• Describe this simply as cubic complexity, O(n3) in “big oh” notation.

• In practice, we do not need to work out the function in such detail in order to
come to the conclusion.

• We can analyse the algorithm, or plot the time taken for various inputs.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008



9

Different Computing Devices

We attempt to get an idea of how the algorithm will run, regardless for example
of the speed of the processor.

However, the distinctions within the polynomial class are not necessarily robust
across different types of computing devices — may vary according to memory
characteristics.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

10

Determining Complexity

• Decide which input(s) complexity is to be relative to;

• Decide how “size” is to be measured;

• “Count” how many constant-time operations will happen in the worst case for
an input of size n, bearing in mind that only order of magnitude will be
required.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

11

Constant time operations

• getting/setting the value in a given memory location

• arithmetic operations (add, multiply, . . . ) (if not too large)

• checking if two numbers are the same (if not too large)

• testing the type of a data representation (list? real?)

• accessing/setting a component of a pair (d1, d2)

• accessing/setting a component of an array/record.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

12

Example: Is something in a list?

The list data structure supports in constant time: finding first, finding rest,
putting element on front

To see if X is in list Y

Until Y is NIL do

If X is the first of Y

Return True as result, halt

Else

Set Y to rest of Y

Return False

This is a version of pseudo-code, with standard imperative programming
constructs.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008



13

Simulation

Is 3 in the list [1, 2, 3, 4] ?

Work through the algorithm – how many steps are needed?

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

14

Complexity

• Let n be the length of the list (meaning what?)

• Worst case is when the item is not in the list

• At each step:
– check if Y is NIL
– get first of Y

– test if first of Y = X

– get rest of Y
– set Y

Each is a constant time operation. So, complexity is linear in n

In general for loops, complexity is work in each iteration (if it’s constant) ×

number of iterations.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

15

Example: reversing a list

To reverse list A:

If A is NIL, return NIL, halt

Else

Set B = NIL

Until A is NIL do

Set C = first of A

Set A = rest of A

Set B = C in front of B

Return B, halt

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

16

Complexity

Same ideas

• Measure on input?

• How much work in the iteration?

• How many times through the loop?

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008



17

Example: Sorting a vector

The vector data structure supports constant time access and update of the
components.

To sort elements of vector V, size n:

For X going down from n to 1 do

For Y going from 1 up to X-1 do

If V[Y+1] < V(Y) swap V[Y+1],V[Y]

This works – we’ll ignore why.

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

18

Simulation

Sort [|5,1,2,4|]

Keep track of X,Y

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

19

Complexity

• The inner loop involves a bounded number of constant time operations
(doesn’t depend on n).

• The inner loop executes this X-1 times

• The outer loop does this with X from n to 1

• Inner stuff executed (n − 1) + (n − 2) + · · · + 1 times

• This is quadratic
n − 1 terms each on average n/2, gives 1

2
n(n − 1);

complexity is O(n2).

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008

20

Summary

• Time complexity in worst case

• Basic complexity classes

• Analysing loops for basic data structures

Alan Smaill Fundamentals of Artificial Intelligence Sep 29, 2008


