Today

- Efficiency of Algorithms
- Complexity classes

See Russell and Norvig, appendix A; a fuller account is in Aho, Hopcraft and Ullman, "Data structures and Algorithms", chapter 1.

Acknowledgements to Chris Mellish for slides

Some functions of n

$\log _{e}(n)$	0	0.7	2.3	3	4.6	6.9
n	1	2	10	2×10	1×10^{2}	1×10^{3}
n^{2}	1	4	10^{2}	2×10^{2}	1×10^{4}	1×10^{6}
n^{3}	1	8	10^{3}	8×10^{3}	1×10^{6}	1×10^{9}
$100 n^{3}$	10^{2}	8×10^{2}	10^{5}	8×10^{5}	1×10^{8}	1×10^{11}
n^{4}	1	16	10^{4}	2×10^{5}	1×10^{8}	1×10^{12}
n^{25}	1	3×10^{27}	10^{25}	3×10^{32}	1×10^{50}	1×10^{75}
$1000 n^{25}$	10^{3}	3×10^{30}	10^{28}	3×10^{35}	1×10^{53}	1×10^{78}
2^{n}	2	4	10^{3}	1×10^{6}	1×10^{30}	1×10^{301}

Alan Smaill
Fundamentals of Artificial Intelligence
Sep 29, 2008

informanatics

Complexity Classes

- constant - the amount of work does not depend on n
- logarithmic - the amount of work behaves like $\log _{k}(n)$ for some constant k
- polynomial - the amount of work behaves like n^{k}, for some constant k. More precisely, distinguish cases linear $(k=1)$, quadratic $(k=2)$, cubic ($k=3$), ..
- exponential - the amount of work behaves like k^{n}, for some constant k.

Different Computing Devices

We attempt to get an idea of how the algorithm will run, regardless for example of the speed of the processor.
However, the distinctions within the polynomial class are not necessarily robust across different types of computing devices - may vary according to memory characteristics.

informatornof

Constant time operations

- getting/setting the value in a given memory location
- arithmetic operations (add, multiply, . . .) (if not too large)
- checking if two numbers are the same (if not too large)
- testing the type of a data representation (list? real?)
- accessing/setting a component of a pair $\left(d_{1}, d_{2}\right)$
- accessing/setting a component of an array/record.

Determining Complexity

- Decide which input(s) complexity is to be relative to;
- Decide how "size" is to be measured;
- "Count" how many constant-time operations will happen in the worst case for an input of size n, bearing in mind that only order of magnitude will be required.

Example: Is something in a list?

The list data structure supports in constant time: finding first, finding rest, putting element on front

To see if X is in list Y Until Y is NIL do If X is the first of Y
Return True as result, halt

Else

Set Y to rest of Y

Return False

This is a version of pseudo-code, with standard imperative programming constructs.

Simulation

Is 3 in the list $[1,2,3,4]$?
Work through the algorithm - how many steps are needed?

Example: reversing a list

To reverse list A:
If A is NIL, return NIL, halt
Else
Set B = NIL
Until A is NIL do
Set $C=$ first of A
Set $A=$ rest of A
Set $B=C$ in front of B
Return B, halt

Complexity

- Let n be the length of the list (meaning what?)
- Worst case is when the item is not in the list
- At each step:
- check if Y is NIL
- get first of Y
- test if first of $Y=X$
- get rest of Y
- set Y

Each is a constant time operation. So, complexity is linear in n
In general for loops, complexity is work in each iteration (if it's constant) \times number of iterations.
$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Sep 29, 2008

Complexity

Same ideas

- Measure on input?
- How much work in the iteration?
- How many times through the loop?

Example: Sorting a vector

The vector data structure supports constant time access and update of the components.
To sort elements of vector V, size n :
For X going down from n to 1 do
For Y going from 1 up to $X-1$ do
If $\mathrm{V}[\mathrm{Y}+1]<\mathrm{V}(\mathrm{Y})$ swap $\mathrm{V}[\mathrm{Y}+1], \mathrm{V}[\mathrm{Y}]$
This works - we'll ignore why.

- The inner loop involves a bounded number of constant time operations (doesn't depend on n).
- The inner loop executes this $\mathrm{X}-1$ times
- The outer loop does this with X from n to 1
- Inner stuff executed $(n-1)+(n-2)+\cdots+1$ times
- This is quadratic
$n-1$ terms each on average $n / 2$, gives $\frac{1}{2} n(n-1)$; complexity is $O\left(n^{2}\right)$.

Simulation

Sort [|5,1,2,4|]
Keep track of X, Y
$\overline{\text { Alan Smaill }}$

Summary

- Time complexity in worst case
- Basic complexity classes
- Analysing loops for basic data structures

