
1

This week

• last week of lectures

• Thursday: summary of examinable material
bring along your questions about the course!

• tutorials this week and next week

Today

See Russell and Norvig, chapter 11

• Planning

• Distributed computation

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

2

Outline

♦ Search vs. planning

♦ STRIPS operators

♦ Partial-order planning

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

3

Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

4

Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning

States (Lisp?) data structures Logical sentences
Actions (Lisp?) code Preconditions/outcomes
Goal (Lisp?) code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

5

STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p) Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

6

Partially ordered plans

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

7

Example

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

8

Example

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

9

Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

10

Planning process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct
plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

POP algorithm sketch 11

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?(plan) then return plan

Sneed, c← Select-Subgoal(plan)

Choose-Operator(plan, operators,Sneed, c)

Resolve-Threats(plan)

end

function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved

return Sneed, c

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

POP algorithm contd. 12

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an effect

if there is no such step then fail

add the causal link Sadd
c
−→ Sneed to Links(plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(plan)

if Sadd is a newly added step from operators then

add Sadd to Steps(plan)

add Start ≺ Sadd ≺ Finish to Orderings(plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c
−→ Sj in Links(plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings(plan)

Promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

Clobbering and promotion/demotion 13

A clobberer is a step that could destroy the condition achieved by a
causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)
Promotion: put after Buy(Milk)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

14

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem
description

Particularly good for problems with many loosely related subgoals

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

15

Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

Example contd. 16

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

Example contd. 17

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

Example contd. 18

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

Example contd. 19

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

20

Distributed AI

The notion of algorithm we have used so far is based on a sequential
model of computation, where there is a linear sequence of computation
steps; compare the von Neumann architecture:

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

21

Distributed computation

Nowadays much computation happens in loosely connected devices,
and computational aspects are becoming pervasive in basic devices.

Distributed algorithms work by allowing computation on different
processors to cooperate; the area of Distributed AI has largely been
subsumed by work on Multi-Agent Systems.

Minsky’s “The Society of Mind” (1985) is a readable collection of short
notes on his view of AI and mind. It influenced later work on agents.

Minsky is less concerned to give a formal characterisation of the way
agents are specified and interact, and more concerned to argue that
this is the right way to approach an understanding of mind.

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

22

Minsky writes:

In “The Society of Mind”:

I’ll call “Society of Mind” this scheme in which each mind is
made of many smaller processes. These we’ll call agents. Each
mental agent by itself can only do some simple thing that needs
no mind or no thought at all. Yet when we join these agents into
societies—in certain very special ways—this leads to true
intelligence.

This already introduces the idea that the individual agents should be
computationally simple; the interesting behaviour is the result of the
interaction.

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

23

Distributed computation

Another reason to be interested in distrubuted computation is that we
can compute faster if the work-load is shared. An ideal is to split the
processing between N processors and do the work in 1

N
of the time it

takes on 1 processor; if this is achieved this is called linear speed-up.

There is a cost in splitting up the task and transferring data that
makes this an ideal goal – sometimes there can be linear slow-down!

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

24

Super-linear speed-up

Some algorithms have potential for exceeding linear speed-up.

An example is the α − β game playing algorithm we saw earlier.
Pruning of the search tree there depends on the order in which the tree
is searched;
if branches of the tree are searched in parallel, and computed bounds
are propagated between the parallel searches, much larger parts of the
search can be pruned away.

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

25

Summary

• Planning: operators, and plan formation algorithm

• Some comments on distributed AI

Alan Smaill Fundamentals of Artificial Intelligence Nov 17, 2008

