Today

See Russell and Norvig, chapter 7

- Propositional Logic ctd
- Inference algorithms

Inference by enumeration

Depth-first enumeration of all models is sound and complete

> function TT-Entails? $(K B, \alpha)$ returns true or false
> symbols \leftarrow a list of the proposition symbols in $K B$ and α
> return TT-Check-All(KB, α, symbols, [])
> function TT-CHECK-ALL $(K B, \alpha$, symbols, model) returns true or false if Empty? (symbols) then
> if PL-True? (KB, model) then return PL-True? $(\alpha$, model)
> else return true
> else do
> $P \leftarrow \mathrm{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols $)$
> return TT-Check- $\operatorname{AlL}(K B, \alpha$, rest, $\operatorname{Extend}(P$, true, model $))$ and TT-Check-All $(K B, \alpha$, rest, $\operatorname{Extend}(P$, false, model $)$)

Reminder

- Syntax: proposition symbols, joined with $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$.
- Semantics: truth values, logical consequence $K B \models F$
- special formulas:

valid:	true in all interpretations
satisfiable:	true in some interpretations
contradictory:	true in no interpretations

Logical equivalence

Two sentences are logically equivalent iff true in same models:
$\alpha \equiv \beta \quad$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

$(\alpha \wedge \beta)$	$\equiv(\beta \wedge \alpha)$ commutativity of \wedge
$(\alpha \vee \beta)$	$\equiv(\beta \vee \alpha)$ commutativity of \vee
$((\alpha \wedge \beta) \wedge \gamma)$	$\equiv(\alpha \wedge(\beta \wedge \gamma))$ associativity of \wedge
$((\alpha \vee \beta) \vee \gamma)$	$\equiv(\alpha \vee(\beta \vee \gamma))$ associativity of \vee
$\neg(\neg \alpha)$	$\equiv \alpha$ double-negation elimination
$(\alpha \Rightarrow \beta)$	$\equiv(\neg \beta \Rightarrow \neg \alpha)$ contraposition
$\neg(\alpha \wedge \beta)$	$\equiv(\neg \alpha \vee \neg \beta)$ de Morgan
$\neg(\alpha \vee \beta)$	$\equiv(\neg \alpha \wedge \neg \beta)$ de Morgan
$(\alpha \wedge(\beta \vee \gamma))$	$\equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$ distributivity of \wedge over \vee
$(\alpha \vee(\beta \wedge \gamma))$	$\equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))$ distributivity of \vee over \wedge

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

Model checking

truth table enumeration (always exponential in n)
improved backtracking, heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Forward chaining

Idea: fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward and backward chaining

Horn Form (restricted)
$\mathrm{KB}=$ conjunction of Horn clauses also called definite clauses
Horn clause $=$
\diamond proposition symbol; or
\diamond (conjunction of symbols) \Rightarrow symbol
E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$

Modus Ponens (for Horn Form): complete for Horn KBs

$$
\frac{\alpha_{1}, \ldots, \alpha_{n}, \quad \alpha_{1} \wedge \cdots \wedge \alpha_{n} \Rightarrow \beta}{\beta}
$$

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Forward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Forward chaining example

Forward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008
informanaftics
Forward chaining example

Forward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Forward chaining example

Forward chaining example

Proof of completeness

FC derives every atomic sentence that is entailed by $K B$

1. FC reaches a fixed point where no new atomic sentences are derived.
2. Consider the final state as a model m, assigning true/false to symbols.
3. Every clause in the original $K B$ is true in m

Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false in m
Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in m and b is false in m.
Therefore the algorithm has not reached a fixed point!
4. Hence m is a model of $K B$.
5. If $K B \models q$, then q is true in every model of $K B$, including m.

Backward chaining example

Backward chaining

Idea: work backwards from the query q :
to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q
Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

Backward chaining example

Backward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Backward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Backward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008
informanalics
Backward chaining example

Backward chaining example

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Backward chaining example

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to factsPropositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)Propositional logic is compositional : meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)Propositional logic has very limited expressive power (unlike natural language)E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal
$B C$ is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD programme?

Complexity of $B C$ can be much less than linear in size of $K B$
$\overline{\text { Alan Smaill }}$
Fundamentals of Artificial Intelligence
Nov 13, 2008
Alan Smaill \quad Fundamentals of Artificial Intelligence \quad Nov 13, 2008

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Jacques Chirac, colours, soduko games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried, brother of, bigger than, inside, part of, has colour, occurred after, owns, comes between, .
- Functions: father of, best friend, second innings of, one more than, beginning of . . .

Syntax of FOL: Basic elements

Constants	KingJohn, $2, U N, \ldots$
Predicates	Brother, $>, \ldots$
Functions	Sqrt, LeftLegOf,.
Variables	x, y, a, b, \ldots
Connectives	$\wedge \vee \neg \Rightarrow$
Equality	$=$
Quantifiers	$\forall \exists$

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\begin{array}{ll}
& \neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2} \\
\text { E.g. } & \text { Sibling }(\text { KingJohn, } \text { Richard }) \Rightarrow \text { Sibling(Richard, KingJohn }) \\
>(1,2) \vee \leq(1,2) \\
>(1,2) \wedge(\neg>(1,2))
\end{array}
$$

Atomic sentences

```
Atomic sentence \(=\) predicate \(\left(\right.\) term \(_{1}, \ldots\), term \(\left._{n}\right)\)
    or term \(_{1}=\) term \(_{2}\)
        Term \(=\) function \(\left(\right.\) term \(_{1}, \ldots\), term \(\left._{n}\right)\)
        or constant or variable
E.g., Brother(KingJohn, RichardTheLionheart)
    \(>(\) Length \((\) LeftLegOf \((\) Richard \())\), Length \((\) LeftLegOf \((\) KingJohn \()))\)
```

For human consumption, often write $>(X, Y)$ as $X>Y$.

Universal quantification

$\forall\langle$ variables $\rangle\langle$ sentence \rangle
Everyone at Berkeley is smart:
$\forall x \operatorname{At}(x$, Berkeley $) \Rightarrow \operatorname{Smart}(x)$
$\forall x P$ is true in a model m iff P is true with x being each possible object in the model
Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& \text { At }(\text { KingJohn, Berkeley }) \Rightarrow \text { Smart(KingJohn }) \\
\wedge & \text { At }(\text { Richard, Berkeley }) \Rightarrow \text { Smart }(\text { Richard }) \\
\wedge & \text { At }(\text { Berkeley, Berkeley }) \Rightarrow \operatorname{Smart}(\text { Berkeley }) \\
\wedge & \ldots
\end{aligned}
$$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x \quad A t(x, B e r k e l e y) \wedge S m a r t(x)
$$

means "Everyone is at Berkeley and everyone is smart"

Alan Smaill
Fundamentals of Artificial Intelligence
Nov 13, 2008

Another common mistake to avoid

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \quad A t(x, S t a n \text { ford }) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Stanford!

Existential quantification

$\exists\langle$ variables $\rangle\langle$ sentence \rangle
Someone at Stanford is smart:
$\exists x \quad \operatorname{At}(x, S t a n f o r d) \wedge \operatorname{Smart}(x)$
$\exists x P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\begin{aligned}
& \text { At }(\text { KingJohn }, \text { Stanford }) \wedge \text { Smart }(\text { KingJohn }) \\
& \text { At }(\text { Richard }, \text { Stanford }) \wedge \text { Smart }(\text { Richard }) \\
& \text { At }(\text { Stanford }, \text { Stanford }) \wedge \text { Smart }(\text { Stanford }) \\
& \ldots
\end{aligned}
$$

$\begin{array}{lll}\text { Alan Smaill } & \text { Fundamentals of Artificial Intelligence } & \text { Nov 13, } 2008\end{array}$

informartics

Summary

Propositional \& first-order logic:

- syntax, semantics, entailment, . . .
- Forward, backward chaining are linear-time, complete for Horn clauses
First-order logic:
- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers
- much increased expressive power

