
1

Today

See Russell and Norvig, chapter 7

• Propositional Logic ctd

• Inference algorithms

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

2

Reminder

• Syntax: proposition symbols, joined with ¬,∧,∨,⇒,⇔.

• Semantics: truth values, logical consequence KB |= F

• special formulas:

valid: true in all interpretations
satisfiable: true in some interpretations
contradictory: true in no interpretations

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

3

Inference by enumeration
Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB,α) returns true or false

symbols← a list of the proposition symbols in KB and α

return TT-Check-All(KB,α, symbols, [])

function TT-Check-All(KB,α, symbols,model) returns true or false

if Empty?(symbols) then

if PL-True?(KB,model) then return PL-True?(α,model)

else return true

else do

P ←First(symbols); rest←Rest(symbols)

return TT-Check-All(KB,α, rest,Extend(P, true,model)) and

TT-Check-All(KB,α, rest,Extend(P, false,model))

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

4

Logical equivalence
Two sentences are logically equivalent iff true in same models:

α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

5

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

Model checking
truth table enumeration (always exponential in n)
improved backtracking, heuristic search in model space

(sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

6

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses also called definite clauses

Horn clause =
♦ proposition symbol; or
♦ (conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

7

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L∧M ⇒ P

B∧L ⇒ M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B

Q

P

M

L

BA

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

8

Forward chaining algorithm

function PL-FC-Entails?(KB, q) returns true or false

local variables: count, table, indexed by clause, initially no. of premises

inferred, table, indexed by symbol, each entry initially false

agenda, list of symbols, initially symbols known to be true

while agenda is not empty do

p←Pop(agenda)

unless inferred[p] do

inferred[p]← true

for each Horn clause c in whose premise p appears do

decrement count[c]

if count[c] = 0 then do

if Head[c] = q then return true

Push(Head[c], agenda)

return false

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

9

Forward chaining example

Q

P

M

L

BA

2 2

2

2

1

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

10

Forward chaining example

Q

P

M

L

B

2

1

A

1 1

2

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

11

Forward chaining example

Q

P

M

2

1

A

1

B

0

1
L

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

12

Forward chaining example

Q

P

M

1

A

1

B

0

L
0

1

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

13

Forward chaining example

Q

1

A

1

B

0

L
0

M

0

P

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

14

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

15

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

16

Forward chaining example

A B

0

L
0

M

0

P

0

0

Q

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

17

Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived.

2. Consider the final state as a model m, assigning true/false to
symbols.

3. Every clause in the original KB is true in m

Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m.
Then a1 ∧ . . . ∧ ak is true in m and b is false in m.
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB.

5. If KB |= q, then q is true in every model of KB, including m.

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

18

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

19

Backward chaining example

Q

P

M

L

A B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

20

Backward chaining example

P

M

L

A

Q

B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

21

Backward chaining example

M

L

A

Q

P

B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

22

Backward chaining example

M

A

Q

P

L

B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

23

Backward chaining example

M

L

A

Q

P

B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

24

Backward chaining example

M

A

Q

P

L

B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

25

Backward chaining example

M

A

Q

P

L

B

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

26

Backward chaining example

A

Q

P

L

B

M

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

27

Backward chaining example

A

Q

P

L

B

M

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

28

Backward chaining example

A

Q

P

L

B

M

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

29

Backward chaining example

A

Q

P

L

B

M

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

30

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD programme?

Complexity of BC can be much less than linear in size of KB

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

31

Pros and cons of propositional logic

Propositional logic is declarative:
pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional :
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent

(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

32

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Jacques Chirac,
colours, soduko games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried,
brother of, bigger than, inside, part of, has colour, occurred after,
owns, comes between, . . .

• Functions: father of, best friend, second innings of, one more than,
beginning of . . .

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

33

Syntax of FOL: Basic elements

Constants KingJohn, 2, UN, . . .

Predicates Brother, >, . . .

Functions Sqrt, LeftLegOf, . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

34

Atomic sentences
Atomic sentence = predicate(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)

> (Length(LeftLegOf (Richard)),Length(LeftLegOf (KingJohn)))

For human consumption, often write > (X,Y) as X > Y .

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

35

Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn, Richard) ⇒ Sibling(Richard, KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ (¬ >(1, 2))

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

36

Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x, Berkeley) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn, Berkeley) ⇒ Smart(KingJohn)
∧ At(Richard,Berkeley) ⇒ Smart(Richard)
∧ At(Berkeley, Berkeley) ⇒ Smart(Berkeley)
∧ . . .

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

37

A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x, Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

38

Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn, Stanford) ∧ Smart(KingJohn)
∨ At(Richard, Stanford) ∧ Smart(Richard)
∨ At(Stanford, Stanford) ∧ Smart(Stanford)
∨ . . .

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

39

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

40

Summary

Propositional & first-order logic:
– syntax, semantics, entailment, . . .
– Forward, backward chaining are linear-time,

complete for Horn clauses
First-order logic:

– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers
– much increased expressive power

Alan Smaill Fundamentals of Artificial Intelligence Nov 13, 2008

