Algorithms for MapReduce

Assignment 1 released
Due 16:00 on 20 October

Correctness is not enough!
Most marks are for efficiency.

Combining, Sorting, and Partitioning

... and algorithms exploiting these options.

Important: learn and apply optimization tricks.
Less important: these specific examples.

Last lecture: hash table has unbounded size

#!/usr/bin/python3
import sys
def spill(cache):
for word, count in cache.items():
print(word + "\t" + str(count))

cache = {%}
for line in sys.stdin:
for word in line.split():
cache[word] = cache.get(word, 0) + 1
spill(cache)

Combiners

®00000000

Solution: bounded size

#!/usr/bin/python3
import sys
def spill(cache):
for word, count in cache.items():
print(word + "\t" + str(count))

cache = {}
for line in sys.stdin:
for word in line.split():
cache[word] = cache.get(word, 0) + 1
if (len(cache) >= 10): #Limit 10 entries
spill(cache)
cache.clear()
spill(cache)

Combiners

O@0000000

Combiners

Combiners formalize the local aggregation we just did:

Map Machine

Mapper

N

Combiner

y

Local Disk

Combiners

[e]e] le]elele]e]e]

Specifying a Combiner

Hadoop bas built-in support for combiners:

hadoop jar hadoop-streaming-2.7.3.jar Run Hadoop
-files count_map.py,count_reduce.py Copy to workers
-input /data/assignments/ex1/webSmall.txt Read text file
-output /user/$USER/combined Write here
-mapper count_map.py Simple mapper
-combiner count_reduce.py Combiner sums
-reducer count_reduce.py Reducer sums

Combiners

[e]o]e] lelele]e]e]

Specifying a Combiner

Hadoop bas built-in support for combiners:

hadoop jar hadoop-streaming-2.7.3.jar Run Hadoop
-files count_map.py,count_reduce.py Copy to workers
-input /data/assignments/ex1/webSmall.txt Read text file
-output /user/$USER/combined Write here
-mapper count_map.py Simple mapper
-combiner count_reduce.py Combiner sums
-reducer count_reduce.py Reducer sums

How is this implemented?

Combiners

[e]o]e] lelele]e]e]

Mapper's Initial Sort

Map
Partitionta Shard) Assign destination reducer
RAM buffer RAM buffer Remember what fits in RAM
$ $ Sort batch in RAM
Co*ne Co*ne Optional combiner

W W

Disk Disk

Combiners

[e]o]ele] lelele]e]

Merge Sort

When the mapper runs out of RAM, it spills to disk.
— Chunks of sorted data called “spills”.

Mappers merge their spills into one per reducer.
Reducers merge input from multiple mappers.

Spill 0 Spill 1
a 3 a b
—c 4 b 9
d 2 —c 6
Y v
Combiner
a 8
b 9
—c 10

Combiners
000008000

Combiner Summary

Combiners optimize merge sort and reduce network traffic.
They may run in:

@ Mapper initial sort
@ Mapper merge

@ Reducer merge

Combiners

0O00000e00

Combiner FAQ

Hadoop might not run your combiner at all!
Combiners will see a mix of mapper and combiner output.

Hadoop won't partition or sort combiner output again.
= Don't change the key.

Combiners

000000080

Combiner Efficiency: Sort vs Hash Table

Hadoop sorts before combining
— Duplicate keys are sorted —> slow

Our in-mapper implementation used a hash table.
Also reduces Java <+ Python overhead.

In-mapper is usually faster, but we'll let you use either one.

Combiners

0O0000000e

Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

Map: (city, temperature) — (city, temperature)

Reduce: Count, sum temperatures, and divide.

Combiners

@0

Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

Map: (city, temperature) — (city, temperature)
Combine: Same as reducer?
Reduce: Count, sum temperatures, and divide.

Combiners

@0

Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

Map: (city, temperature) — (city, count = 1, temperature)
Combine: Sum count and temperature fields.
Reduce: Sum count, sum temperatures, and divide.

Combiners

@0

Combiners

Pattern: Combiners

Combiners reduce communication by aggregating locally.
Many times they are the same as reducers (i.e. summing).

... but not always (i.e. averaging).

(o] J

Custom Partitioner and Sorting Function

Partition and Sort

®00000

Mapper's Initial Sort

Map
Partitionta Shard) Custom partitioner
RAM buffer RAM buffer
$ $ Custom sort function
Co*ne Co*ne

W W

Disk Disk

Partition and Sort

0O®e0000

Problem: Comparing Output

Alice's Word Counts

a
hi

20
2

i
the

13
31

why

12

Partition and Sort

[e]e] lelele}

a
why

20
12

hi
i
the

Bob's Word Counts

2
13
31

Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20
hi 2 the 31 why 12
a 20 the 31 i 13
a 20 the 31 i 13
hi 2 why 12
hi 2 why 12

Send words to a consistent place

Partition and Sort

[e]e] lelele}

hi
i
the

2
13
31

Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20
hi 2 the 31 why 12
Map

a 20 the 31 i 13

a 20 the 31 i 13

hi 2 why 12

hi 2 why 12

Reduce

Partition and Sort

[e]e] lelele}

hi
i
the

2
13
31

Send words to a consistent place: reducers

Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 13
the 31
Map
a 20 the 31 i 13 Unordered
a 20 the 31 i 13 Alice/Bob
hi 2 why 12
hi 2 why 12
Reduce

Send words to a consistent place: reducers

Partition and Sort

[e]e] lelele}

Comparing Output Detail

Map: (word, count) + (word, student, count) !

Reduce: Verify both values are present and match.
Deduct marks from Alice/Bob as appropriate.

'The mapper can tell Alice and Bob apart by input file name.
Partition and Sort

[e]o]e] lele}

Comparing Output Detail

Map: (word, count) + (word, student, count) !
Partition: By word
Sort: By werd(word, student)

Reduce: Verify both values are present and match.
Deduct marks from Alice/Bob as appropriate.

Exploit sort to control input order

'The mapper can tell Alice and Bob apart by input file name.
Partition and Sort

[e]o]e] lele}

Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 i 13
the 31

Map

a 20 the 31 i 13 Ordeied

a 20 the 31 i 13 Alice/Bob

hi 2 why 12

hi 2 why 12

Reduce

Send words to a consistent place: reducers

Partition and Sort

0O000e0

Pattern: Exploit the Sort

Without Custom Sort
Reducer buffers all students in RAM
_—

Might run out of RAM

With Custom Sort

TA appears first, reducer streams through students.
Constant reducer memory.

Partition and Sort

[e]o]e]e]e] J

Problem: Word Coocurrence

Count pairs of words that appear in the same line.

Pairs vs Stripes

. 28

THE UNIVERSITY of EDINBURGH

)- informatics

First try: pairs

« Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For all pairs, emit (a, b) — count

* Reducers sum up counts associated with these pairs
» Use combiners!

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Pairs: pseudo-code

class Mapper
method map(docid a, doc d)
for all w in d do
for all u in neighbours(w) do

emit(pair(w, u), 1);

class Reducer
method reduce(pair p, counts [cl, c2, ..])
sum = 0;
for all c in [c1, c2, ..] do
sum = sum + C;

emit(p, sum);

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Analysing pairs

» Advantages
— Easy to implement, easy to understand

» Disadvantages
— Lots of pairs to sort and shuffle around (upper bound?)
— Not many opportunities for combiners to work

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Another try: stripes

« Idea: group together pairs into an associative array

(a, b) » 1
(a, ¢) »2
(a, d) » 5 a-»>{b:1, c:t 2, d:5,e:3, f:2}
(a, e) » 3
(a, f) » 2

» Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For each term, emit a — { b: count,, c: count,, d: count, ... }

» Reducers perform element-wise sum of associative arrays

a~»>{b:1, d: 5, e: 3}
a-»{b:1, c:2, d: 2, f: 2}
a-={b: 2, c:2, d: 7, e: 3, f: 2}

Cleverly-constructed data structure brings together partial results
www.inf.ed.ac.uk

- THE UNIVERSITY of EDINBURGH

- informatics
Stripes: pseudo-code

class Mapper

method map(docid a, doc d)
for all w in d do
H = associative_array(string - integer);
for all u in neighbours(w) do
Hlul++;

emit(w, H);

class Reducer
method reduce(term w, stripes [H1, H2, ..])
H; = assoiative_array(string - integer);
for all H in [H1, H2, ..] do
sum(Hg, H); // sum same-keyed entries

emit(w, Hg);

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Stripes analysis

» Advantages
— Far less sorting and shuffling of key-value pairs
— Can make better use of combiners
» Disadvantages
— More difficult to implement
— Underlying object more heavyweight
— Fundamental limitation in terms of size of event space

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
4000

T T T

T
“stripes" approach m
"pairs" approach @
3500 |

3000
2500
2000 -

1500 +

3
b}
c
o
o
@
2
o
£
o
£
c
c
E]

1000 |~

500

0 L | I |
0 20 40 60 80 100

percentage of the APW corpus

Cluster size: 38 cores inf.ed K
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), www.int.ed.ac.u
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

THE UNIVERSITY of EDINBURGH

informatics
Effect of cluster size on "stripes" algorithm
relative size of EC2 cluster
1x 2 3x 4x
5000 : : : .
4000 4x
w
el
8 £y
o 3000 [x T
(7] [
@ o}
o &
£ o
= 2
@ 2000 [X ®
c &
S [
o
2
1000 - 1x
0 1 Il 1 1 1 1 Il
10 20 30 40 50 60 70 80 90

size of EC2 cluster (number of slave instances)

www.inf.ed.ac.uk

