Algorithms for MapReduce

Assignment 1 released
Due 16:00 on 20 October

Correctness is not enough! Most marks are for efficiency.

Combining, Sorting, and Partitioning ...and algorithms exploiting these options.

Important: learn and apply optimization tricks.

Less important: these specific examples.

Last lecture: hash table has unbounded size

```
#!/usr/bin/python3
import sys
def spill(cache):
  for word, count in cache.items():
    print(word + "\t" + str(count))
cache = {}
for line in sys.stdin:
  for word in line.split():
    cache[word] = cache.get(word, 0) + 1
spill(cache)
```

Solution: bounded size

```
#!/usr/bin/python3
import sys
def spill(cache):
  for word, count in cache.items():
    print(word + "\t" + str(count))
cache = {}
for line in sys.stdin:
  for word in line.split():
    cache[word] = cache.get(word, 0) + 1
    if (len(cache) >= 10): #Limit 10 entries
      spill(cache)
      cache.clear()
spill(cache)
```

Combiners

Combiners formalize the local aggregation we just did:

Specifying a Combiner

Hadoop bas built-in support for combiners:

```
hadoop jar hadoop-streaming-2.7.3.jar
-files count_map.py,count_reduce.py
-input /data/assignments/ex1/webSmall.txt
-output /user/$USER/combined
-mapper count_map.py
-combiner count_reduce.py
-reducer count_reduce.py
```

Run Hadoop Copy to workers Read text file Write here Simple mapper Combiner sums Reducer sums

Specifying a Combiner

Hadoop bas built-in support for combiners:

```
hadoop jar hadoop-streaming-2.7.3.jar
-files count_map.py,count_reduce.py
-input /data/assignments/ex1/webSmall.txt
-output /user/$USER/combined
-mapper count_map.py
-combiner count_reduce.py
-reducer count_reduce.py
```

Run Hadoop Copy to workers Read text file Write here Simple mapper Combiner sums Reducer sums

How is this implemented?

Mapper's Initial Sort

Merge Sort

When the mapper runs out of RAM, it spills to disk.

 \implies Chunks of sorted data called "spills".

Mappers merge their spills into one per reducer.

Reducers merge input from multiple mappers.

Combiner Summary

Combiners optimize merge sort and reduce network traffic. They **may** run in:

- Mapper initial sort
- Mapper merge
- Reducer merge

Combiner FAQ

Hadoop might not run your combiner at all!

Combiners will see a mix of mapper and combiner output.

Hadoop won't partition or sort combiner output again.

 \implies Don't change the key.

Combiner Efficiency: Sort vs Hash Table

Hadoop sorts before combining \implies Duplicate keys are sorted \implies slow

Our in-mapper implementation used a hash table. Also reduces Java \leftrightarrow Python overhead.

In-mapper is usually faster, but we'll let you use either one.

Problem: Averaging

We're given temperature readings from cities:

Key	Value
San Francisco	22
Edinburgh	14
Los Angeles	23
Edinburgh	12
Edinburgh	9
Los Angeles	21

Find the average temperature in each city.

Map: (city, temperature) \mapsto (city, temperature)

Reduce: Count, sum temperatures, and divide.

Problem: Averaging

We're given temperature readings from cities:

Key	Value
San Francisco	22
Edinburgh	14
Los Angeles	23
Edinburgh	12
Edinburgh	9
Los Angeles	21

Find the average temperature in each city.

Map: (city, temperature) \mapsto (city, temperature)

Combine: Same as reducer?

Reduce: Count, sum temperatures, and divide.

Problem: Averaging

We're given temperature readings from cities:

Key	Value
San Francisco	22
Edinburgh	14
Los Angeles	23
Edinburgh	12
Edinburgh	9
Los Angeles	21

Find the average temperature in each city.

Map: (city, temperature) \mapsto (city, count = 1, temperature)

Combine: Sum count and temperature fields.

Reduce: Sum count, sum temperatures, and divide.

Pattern: Combiners

Combiners reduce communication by aggregating locally.

Many times they are the same as reducers (i.e. summing).

... but not always (i.e. averaging).

Custom Partitioner and Sorting Function

Mapper's Initial Sort

Alice's Word Counts

a 20 hi 2 i 13 the 31 why 12

Bob's Word Counts

a 20 why 12 hi 2 i 13 the 31

Alice's Word Counts

20

why 12

why

Bob's Word Counts

the

31 the the 31

Send words to a consistent place

Send words to a consistent place: reducers

Send words to a consistent place: reducers

whv

12

Reduce

Comparing Output Detail

Map: (word, count) \mapsto (word, student, count) ¹

Reduce: Verify both values are present and match.

Deduct marks from Alice/Bob as appropriate.

¹The mapper can tell Alice and Bob apart by input file name.

Comparing Output Detail

Map: (word, count) \mapsto (word, student, count) ¹

Partition: By word

Sort: By word(word, student)

Reduce: Verify both values are present and match.

Deduct marks from Alice/Bob as appropriate.

Exploit sort to control input order

¹The mapper can tell Alice and Bob apart by input file name.

Send words to a consistent place: reducers

whv

12

Reduce

Pattern: Exploit the Sort

Without Custom Sort Reducer buffers all students in RAM

Might run out of RAM

With Custom Sort
TA appears first, reducer streams through students.
Constant reducer memory.

Problem: Word Coocurrence

Count pairs of words that appear in the same line.

First try: pairs

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) \rightarrow count
- · Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: pseudo-code

```
class Mapper
  method map(docid a, doc d)
    for all w in d do
      for all u in neighbours(w) do
        emit(pair(w, u), 1);
class Reducer
  method reduce(pair p, counts [c1, c2, ...])
    sum = 0:
    for all c in [c1, c2, ...] do
      sum = sum + c;
    emit(p, sum);
```


Analysing pairs

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another try: stripes

Idea: group together pairs into an associative array

```
(a, b) \rightarrow 1

(a, c) \rightarrow 2

(a, d) \rightarrow 5

(a, e) \rightarrow 3

(a, f) \rightarrow 2

a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
```

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit a → { b: count_b, c: count_c, d: count_d ... }
- Reducers perform element-wise sum of associative arrays

```
a \rightarrow \{ b: 1, d: 5, e: 3 \}

a \rightarrow \{ b: 1, c: 2, d: 2, f: 2 \}

a \rightarrow \{ b: 2, c: 2, d: 7, e: 3, f: 2 \}
```

Cleverly-constructed data structure brings together partial results

Stripes: pseudo-code

```
class Mapper
  method map(docid a, doc d)
    for all w in d do
      H = associative array(string → integer);
      for all u in neighbours(w) do
        H[u]++;
      emit(w, H):
class Reducer
  method reduce(term w, stripes [H1, H2, ...])
    H_f = assoiative array(string \rightarrow integer);
    for all H in [H1, H2, ...] do
      sum(H<sub>s</sub>, H); // sum same-keyed entries
    emit(w, H<sub>f</sub>);
```


Stripes analysis

- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

Effect of cluster size on "stripes" algorithm

