Algorithms for MapReduce




Assignment 1 released
Due 16:00 on 20 October

Correctness is not enough!
Most marks are for efficiency.




Combining, Sorting, and Partitioning

... and algorithms exploiting these options.

Important: learn and apply optimization tricks.
Less important: these specific examples.




Last lecture: hash table has unbounded size

#!/usr/bin/python3
import sys
def spill(cache):
for word, count in cache.items():
print(word + "\t" + str(count))

cache = {%}
for line in sys.stdin:
for word in line.split():
cache[word] = cache.get(word, 0) + 1
spill(cache)
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Solution: bounded size

#!/usr/bin/python3
import sys
def spill(cache):
for word, count in cache.items():
print(word + "\t" + str(count))

cache = {}
for line in sys.stdin:
for word in line.split():
cache[word] = cache.get(word, 0) + 1
if (len(cache) >= 10): #Limit 10 entries
spill(cache)
cache.clear()
spill(cache)
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Combiners

Combiners formalize the local aggregation we just did:

Map Machine

Mapper

N

Combiner

y

Local Disk

Combiners
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Specifying a Combiner

Hadoop bas built-in support for combiners:

hadoop jar hadoop-streaming-2.7.3.jar Run Hadoop
-files count_map.py,count_reduce.py Copy to workers
-input /data/assignments/ex1/webSmall.txt Read text file
-output /user/$USER/combined Write here
-mapper count_map.py Simple mapper
-combiner count_reduce.py Combiner sums
-reducer count_reduce.py Reducer sums

Combiners
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Specifying a Combiner

Hadoop bas built-in support for combiners:

hadoop jar hadoop-streaming-2.7.3.jar Run Hadoop
-files count_map.py,count_reduce.py Copy to workers
-input /data/assignments/ex1/webSmall.txt Read text file
-output /user/$USER/combined Write here
-mapper count_map.py Simple mapper
-combiner count_reduce.py Combiner sums
-reducer count_reduce.py Reducer sums

How is this implemented?

Combiners
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Mapper's Initial Sort

Map
Partitionta Shard) Assign destination reducer
RAM buffer RAM buffer Remember what fits in RAM
$ $ Sort batch in RAM
Co*ne Co*ne Optional combiner

W W

Disk Disk

Combiners
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Merge Sort

When the mapper runs out of RAM, it spills to disk.
— Chunks of sorted data called “spills”.

Mappers merge their spills into one per reducer.
Reducers merge input from multiple mappers.

Spill 0 Spill 1
a 3 a b
—c 4 b 9
d 2 —c 6
Y v
Combiner
a 8
b 9
—c 10
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Combiner Summary

Combiners optimize merge sort and reduce network traffic.
They may run in:

@ Mapper initial sort
@ Mapper merge

@ Reducer merge

Combiners
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Combiner FAQ

Hadoop might not run your combiner at all!
Combiners will see a mix of mapper and combiner output.

Hadoop won't partition or sort combiner output again.
= Don't change the key.
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Combiner Efficiency: Sort vs Hash Table

Hadoop sorts before combining
— Duplicate keys are sorted —> slow

Our in-mapper implementation used a hash table.
Also reduces Java <+ Python overhead.

In-mapper is usually faster, but we'll let you use either one.
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Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

Map: (city, temperature) — (city, temperature)

Reduce: Count, sum temperatures, and divide.
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Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

Map: (city, temperature) — (city, temperature)
Combine: Same as reducer?
Reduce: Count, sum temperatures, and divide.

Combiners
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Problem: Averaging

We're given temperature readings from cities:

Key Value
San Francisco 22
Edinburgh 14
Los Angeles 23
Edinburgh 12
Edinburgh 9
Los Angeles 21

Find the average temperature in each city.

Map: (city, temperature) — (city, count = 1, temperature)
Combine: Sum count and temperature fields.
Reduce: Sum count, sum temperatures, and divide.

Combiners
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Combiners

Pattern: Combiners

Combiners reduce communication by aggregating locally.
Many times they are the same as reducers (i.e. summing).

... but not always (i.e. averaging).
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Custom Partitioner and Sorting Function

Partition and Sort
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Mapper's Initial Sort

Map
Partitionta Shard) Custom partitioner
RAM buffer RAM buffer
$ $ Custom sort function
Co*ne Co*ne

W W

Disk Disk

Partition and Sort
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Problem: Comparing Output

Alice's Word Counts

a
hi

20
2

i
the

13
31

why

12

Partition and Sort
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Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20
hi 2 the 31 why 12
a 20 the 31 i 13
a 20 the 31 i 13
hi 2 why 12
hi 2 why 12

Send words to a consistent place

Partition and Sort
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Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20
hi 2 the 31 why 12
Map

a 20 the 31 i 13

a 20 the 31 i 13

hi 2 why 12

hi 2 why 12

Reduce

Partition and Sort
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Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 13
the 31
Map
a 20 the 31 i 13 Unordered
a 20 the 31 i 13 Alice/Bob
hi 2 why 12
hi 2 why 12
Reduce

Send words to a consistent place: reducers

Partition and Sort
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Comparing Output Detail

Map: (word, count) + (word, student, count) !

Reduce: Verify both values are present and match.
Deduct marks from Alice/Bob as appropriate.

'The mapper can tell Alice and Bob apart by input file name.
Partition and Sort
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Comparing Output Detail

Map: (word, count) + (word, student, count) !
Partition: By word
Sort: By werd(word, student)

Reduce: Verify both values are present and match.
Deduct marks from Alice/Bob as appropriate.

Exploit sort to control input order

'The mapper can tell Alice and Bob apart by input file name.
Partition and Sort
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Problem: Comparing Output

Alice's Word Counts

Bob's Word Counts

a 20 i 13 why 12 a 20 hi 2
hi 2 the 31 why 12 i 13
the 31

Map

a 20 the 31 i 13 Ordeied

a 20 the 31 i 13 Alice/Bob

hi 2 why 12

hi 2 why 12

Reduce

Send words to a consistent place: reducers

Partition and Sort
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Pattern: Exploit the Sort

Without Custom Sort
Reducer buffers all students in RAM
_—

Might run out of RAM

With Custom Sort

TA appears first, reducer streams through students.
Constant reducer memory.

Partition and Sort
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Problem: Word Coocurrence

Count pairs of words that appear in the same line.

Pairs vs Stripes

. 28



THE UNIVERSITY of EDINBURGH

)- informatics

First try: pairs

« Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For all pairs, emit (a, b) — count

* Reducers sum up counts associated with these pairs
» Use combiners!

www.inf.ed.ac.uk



THE UNIVERSITY of EDINBURGH

informatics

Pairs: pseudo-code

class Mapper
method map(docid a, doc d)
for all w in d do
for all u in neighbours(w) do

emit(pair(w, u), 1);

class Reducer
method reduce(pair p, counts [cl, c2, ..])
sum = 0;
for all c in [c1, c2, ..] do
sum = sum + C;

emit(p, sum);

www.inf.ed.ac.uk



THE UNIVERSITY of EDINBURGH

informatics
Analysing pairs

» Advantages
— Easy to implement, easy to understand

» Disadvantages
— Lots of pairs to sort and shuffle around (upper bound?)
— Not many opportunities for combiners to work

www.inf.ed.ac.uk



THE UNIVERSITY of EDINBURGH

informatics

Another try: stripes

« Idea: group together pairs into an associative array

(a, b) » 1
(a, ¢) »2
(a, d) » 5 a-»>{b:1, c:t 2, d:5,e:3, f:2}
(a, e) » 3
(a, f) » 2

» Each mapper takes a sentence:
— Generate all co-occurring term pairs
— For each term, emit a — { b: count,, c: count,, d: count, ... }

» Reducers perform element-wise sum of associative arrays

a~»>{b:1, d: 5, e: 3}
a-»{b:1, c:2, d: 2, f: 2}
a-={b: 2, c:2, d: 7, e: 3, f: 2}

Cleverly-constructed data structure brings together partial results
www.inf.ed.ac.uk



- THE UNIVERSITY of EDINBURGH

- informatics
Stripes: pseudo-code

class Mapper

method map(docid a, doc d)
for all w in d do
H = associative_array(string - integer);
for all u in neighbours(w) do
Hlul++;

emit(w, H);

class Reducer
method reduce(term w, stripes [H1, H2, ..])
H; = assoiative_array(string - integer);
for all H in [H1, H2, ..] do
sum(Hg, H); // sum same-keyed entries

emit(w, Hg);

www.inf.ed.ac.uk



THE UNIVERSITY of EDINBURGH

informatics
Stripes analysis

» Advantages
— Far less sorting and shuffling of key-value pairs
— Can make better use of combiners
» Disadvantages
— More difficult to implement
— Underlying object more heavyweight
— Fundamental limitation in terms of size of event space

www.inf.ed.ac.uk



THE UNIVERSITY of EDINBURGH

informatics

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
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Effect of cluster size on "stripes" algorithm
relative size of EC2 cluster
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