Algorithms for MapReduce Assignment 1 released Due 16:00 on 20 October Correctness is not enough! Most marks are for efficiency. # Combining, Sorting, and Partitioning ...and algorithms exploiting these options. Important: learn and apply optimization tricks. Less important: these specific examples. #### Last lecture: hash table has unbounded size ``` #!/usr/bin/python3 import sys def spill(cache): for word, count in cache.items(): print(word + "\t" + str(count)) cache = {} for line in sys.stdin: for word in line.split(): cache[word] = cache.get(word, 0) + 1 spill(cache) ``` #### Solution: bounded size ``` #!/usr/bin/python3 import sys def spill(cache): for word, count in cache.items(): print(word + "\t" + str(count)) cache = {} for line in sys.stdin: for word in line.split(): cache[word] = cache.get(word, 0) + 1 if (len(cache) >= 10): #Limit 10 entries spill(cache) cache.clear() spill(cache) ``` ### Combiners Combiners formalize the local aggregation we just did: ### Specifying a Combiner #### Hadoop bas built-in support for combiners: ``` hadoop jar hadoop-streaming-2.7.3.jar -files count_map.py,count_reduce.py -input /data/assignments/ex1/webSmall.txt -output /user/$USER/combined -mapper count_map.py -combiner count_reduce.py -reducer count_reduce.py ``` Run Hadoop Copy to workers Read text file Write here Simple mapper Combiner sums Reducer sums ### Specifying a Combiner #### Hadoop bas built-in support for combiners: ``` hadoop jar hadoop-streaming-2.7.3.jar -files count_map.py,count_reduce.py -input /data/assignments/ex1/webSmall.txt -output /user/$USER/combined -mapper count_map.py -combiner count_reduce.py -reducer count_reduce.py ``` Run Hadoop Copy to workers Read text file Write here Simple mapper Combiner sums Reducer sums ### How is this implemented? ### Mapper's Initial Sort ### Merge Sort When the mapper runs out of RAM, it spills to disk. \implies Chunks of sorted data called "spills". Mappers merge their spills into one per reducer. Reducers merge input from multiple mappers. ### Combiner Summary Combiners optimize merge sort and reduce network traffic. They **may** run in: - Mapper initial sort - Mapper merge - Reducer merge ### Combiner FAQ Hadoop might not run your combiner at all! Combiners will see a mix of mapper and combiner output. Hadoop won't partition or sort combiner output again. \implies Don't change the key. ### Combiner Efficiency: Sort vs Hash Table Hadoop sorts before combining \implies Duplicate keys are sorted \implies slow Our in-mapper implementation used a hash table. Also reduces Java \leftrightarrow Python overhead. In-mapper is usually faster, but we'll let you use either one. ### Problem: Averaging We're given temperature readings from cities: | Key | Value | |---------------|-------| | San Francisco | 22 | | Edinburgh | 14 | | Los Angeles | 23 | | Edinburgh | 12 | | Edinburgh | 9 | | Los Angeles | 21 | Find the average temperature in each city. Map: (city, temperature) \mapsto (city, temperature) Reduce: Count, sum temperatures, and divide. ### Problem: Averaging We're given temperature readings from cities: | Key | Value | |---------------|-------| | San Francisco | 22 | | Edinburgh | 14 | | Los Angeles | 23 | | Edinburgh | 12 | | Edinburgh | 9 | | Los Angeles | 21 | Find the average temperature in each city. Map: (city, temperature) \mapsto (city, temperature) Combine: Same as reducer? Reduce: Count, sum temperatures, and divide. ### Problem: Averaging We're given temperature readings from cities: | Key | Value | |---------------|-------| | San Francisco | 22 | | Edinburgh | 14 | | Los Angeles | 23 | | Edinburgh | 12 | | Edinburgh | 9 | | Los Angeles | 21 | Find the average temperature in each city. Map: (city, temperature) \mapsto (city, count = 1, temperature) Combine: Sum count and temperature fields. Reduce: Sum count, sum temperatures, and divide. #### Pattern: Combiners Combiners reduce communication by aggregating locally. Many times they are the same as reducers (i.e. summing). ... but not always (i.e. averaging). Custom Partitioner and Sorting Function ### Mapper's Initial Sort #### Alice's Word Counts a 20 hi 2 i 13 the 31 why 12 Bob's Word Counts a 20 why 12 hi 2 i 13 the 31 #### Alice's Word Counts 20 why 12 why Bob's Word Counts the 31 the the 31 ### Send words to a consistent place Send words to a consistent place: reducers Send words to a consistent place: reducers whv 12 Reduce ### Comparing Output Detail Map: (word, count) \mapsto (word, student, count) ¹ Reduce: Verify both values are present and match. Deduct marks from Alice/Bob as appropriate. ¹The mapper can tell Alice and Bob apart by input file name. ### Comparing Output Detail Map: (word, count) \mapsto (word, student, count) ¹ Partition: By word Sort: By word(word, student) Reduce: Verify both values are present and match. Deduct marks from Alice/Bob as appropriate. #### Exploit sort to control input order ¹The mapper can tell Alice and Bob apart by input file name. Send words to a consistent place: reducers whv 12 Reduce ### Pattern: Exploit the Sort Without Custom Sort Reducer buffers all students in RAM Might run out of RAM With Custom Sort TA appears first, reducer streams through students. Constant reducer memory. ### Problem: Word Coocurrence Count pairs of words that appear in the same line. #### First try: pairs - Each mapper takes a sentence: - Generate all co-occurring term pairs - For all pairs, emit (a, b) \rightarrow count - · Reducers sum up counts associated with these pairs - Use combiners! #### Pairs: pseudo-code ``` class Mapper method map(docid a, doc d) for all w in d do for all u in neighbours(w) do emit(pair(w, u), 1); class Reducer method reduce(pair p, counts [c1, c2, ...]) sum = 0: for all c in [c1, c2, ...] do sum = sum + c; emit(p, sum); ``` ### Analysing pairs - Advantages - Easy to implement, easy to understand - Disadvantages - Lots of pairs to sort and shuffle around (upper bound?) - Not many opportunities for combiners to work #### Another try: stripes Idea: group together pairs into an associative array ``` (a, b) \rightarrow 1 (a, c) \rightarrow 2 (a, d) \rightarrow 5 (a, e) \rightarrow 3 (a, f) \rightarrow 2 a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \} ``` - Each mapper takes a sentence: - Generate all co-occurring term pairs - For each term, emit a → { b: count_b, c: count_c, d: count_d ... } - Reducers perform element-wise sum of associative arrays ``` a \rightarrow \{ b: 1, d: 5, e: 3 \} a \rightarrow \{ b: 1, c: 2, d: 2, f: 2 \} a \rightarrow \{ b: 2, c: 2, d: 7, e: 3, f: 2 \} ``` Cleverly-constructed data structure brings together partial results #### Stripes: pseudo-code ``` class Mapper method map(docid a, doc d) for all w in d do H = associative array(string → integer); for all u in neighbours(w) do H[u]++; emit(w, H): class Reducer method reduce(term w, stripes [H1, H2, ...]) H_f = assoiative array(string \rightarrow integer); for all H in [H1, H2, ...] do sum(H_s, H); // sum same-keyed entries emit(w, H_f); ``` ### Stripes analysis - Advantages - Far less sorting and shuffling of key-value pairs - Can make better use of combiners - Disadvantages - More difficult to implement - Underlying object more heavyweight - Fundamental limitation in terms of size of event space #### Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices #### Effect of cluster size on "stripes" algorithm