
www.inf.ed.ac.uk

STORM AND LOW-LATENCY 
PROCESSING



www.inf.ed.ac.uk

Low latency processing

• Similar to data stream processing, but with a twist

– Data is streaming into the system (from a database, or a network 

stream, or an HDFS file, or …)

– We want to process the stream in a distributed fashion

– And we want results as quickly as possible

• Not (necessarily) the same as what we have seen so far

– The focus is not on summarising the input

– Rather, it is on “parsing” the input and/or manipulating it on the fly



www.inf.ed.ac.uk

The problem

• Consider the following use-case

• A stream of incoming information needs to be summarised by some identifying token

– For instance, group tweets by hash-tag; or, group clicks by URL;

– And maintain accurate counts

• But do that at a massive scale and in real time

• Not so much about handling the incoming load, but using it

– That's where latency comes into play

• Putting things in perspective

– Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're 

talking about 2.25MB/s

– Google served 34k searches/s in 2010: let's say 100k searches/s now and an 

average of 200 bytes/search that's 20MB/s

– But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s 

throughput



www.inf.ed.ac.uk

A rough approach
• Latency

– Each point 1 − 5 in the figure introduces a high processing latency 

– Need a way to transparently use the cluster to process the stream 

• Bottlenecks

– No notion of locality

• Either a queue per worker per node, or data is moved around

– What about reconfiguration?

• If there are bursts in traffic we need to shutdown, reconfigure and redeploy

w
o
rk

 p
a

rtitio
n
e

r

stream

queue

queue

queue

worker

worker

worker

worker

queue

queue

queue

worker

worker

worker
h
a

d
o
o

p
/

H
D

F
S

persistent 
store

1

3

4
make hadoop-friendly
records out of tweets2

share the load
of incoming items

parallelise processing
on the cluster

extract grouped data
out of distributed files 

5
store grouped data
in persistent store 



www.inf.ed.ac.uk

Storm

• Started up as backtype; widely used in Twitter

• Open-sourced (you can download it and play with it!

– http://storm-project.net/

• On the surface, Hadoop for data streams

– Executes on top of a (likely dedicated) cluster of commodity hardware

– Similar setup to a Hadoop cluster

• Master node, distributed coordination, worker nodes

• We will examine each in detail

• But whereas a MapReduce job will finish, a Storm job—termed a 

topology—runs continuously

– Or rather, until you kill it

http://storm-project.net/


www.inf.ed.ac.uk

Storm vs. Hadoop
Storm Hadoop

Real-time stream processing Batch processing

Stateless Stateful

Master/Slave architecture with ZooKeeper

based coordination. The master node is called 

as nimbus and slaves are supervisors.

Master-slave architecture with/without 

ZooKeeper based coordination. Master node 

is job tracker and slave node is task tracker.

A Storm streaming process can access tens of 

thousands messages per second on cluster.

Hadoop Distributed File System (HDFS) uses 

MapReduce framework to process vast amount 

of data that takes minutes or hours.

Storm topology runs until shutdown by the user 

or an unexpected unrecoverable failure.

MapReduce jobs are executed in a sequential 

order and completed eventually.

distributed and fault-tolerant distributed and fault-tolerant

No Single Point of Failure. If nimbus / 

supervisor dies, restarting makes it continue 

from where it stopped, hence nothing gets 

affected.

JobTracker as Single Point of Failure. If it dies, 

all the running jobs are lost.



www.inf.ed.ac.uk

Application Examples

• Twitter − Twitter is using Apache Storm for its range of “Publisher 

Analytics products”. “Publisher Analytics Products” process each and every 

tweets and clicks in the Twitter Platform. Apache Storm is deeply 

integrated with Twitter infrastructure.

• NaviSite − NaviSite is using Storm for Event log monitoring/auditing 

system. Every logs generated in the system will go through the Storm. 

Storm will check the message against the configured set of regular 

expression and if there is a match, then that particular message will be 

saved to the database.

• Wego − Wego is a travel metasearch engine located in Singapore. Travel 

related data comes from many sources all over the world with different 

timing. Storm helps Wego to search real-time data, resolves concurrency 

issues and find the best match for the end-user.



www.inf.ed.ac.uk

Storm topologies

• A Storm topology is a graph of computation

– Graph contains nodes and edges 

– Nodes model processing logic (i.e., transformation over its input)

– Directed edges indicate communication between nodes

– No limitations on the topology; for instance one node may have more 

than one incoming edges and more than one outgoing edges

• Storm processes topologies in a distributed and reliable fashion



www.inf.ed.ac.uk

Tuple

• An ordered list of elements

• E.g., <tweeter, tweet>

–<“Jon”, “Hello everybody”>

–<“Jane”, “Look at these cute cats!”>

• E.g., <URL, clicker-IP, date, time>

–<www.google.com,101.201.301.401,4/4/2016,10:35:40>

–<www.google.com,101.231.311.101,4/4/2016,10:35:43>

Tuple



www.inf.ed.ac.uk

Stream

• Potentially unbound sequence of tuples

• Twitter Example:

–<“Jon”, “Hello everybody”>, <“Jane”, “Look at these cute 

cats!”>, <“James”,”I like cats too.”>, …

• Website Example

–<www.google.com,101.201.301.401,4/4/2016,10:35:40>,<
www.google.com,101.231.311.101,4/4/2016,10:35:43>,…

Tuple Tuple Tuple



www.inf.ed.ac.uk

Spout

• A Storm entity (process) that is a source of streams

• Often reads from a crawler or database

spout



www.inf.ed.ac.uk

Bolt

• A Storm entity (process) that

–Processes input streams

–Outputs more streams for other bolts

spout

bolt bolt

Output bolt



www.inf.ed.ac.uk

Topology

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream

Persistent

Storage

• Directed graph of 
spouts and bolts

• Storm “application”



www.inf.ed.ac.uk

Topology

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream

Persistent

Storage

• Directed graph of 
spouts and bolts

• Storm “application”

• Can have circles

bolt

Output bolt



www.inf.ed.ac.uk

Types of Bolts

• Filter: forward only tuples which satisfy a condition

• Joins: When receiving two streams A and B, output all 

pairs (A,B) which satisfy a condition

• Apply/Transform: Modify each tuple according to a 

function

• …

• Bolts need to process a lot of data

–Need to make them fast

?



www.inf.ed.ac.uk

Topology Example

{"jon", "hello", 1}

{"jon", "everybody", 1}

Twitter

Streaming API

bolt

spout

Reads 

Tweets
Outputs stream of 

tweet tuples

{"jon", "Hello 

everybody"}

Outputs words and 

their counts



www.inf.ed.ac.uk

From topology to processing: stream groupings

• Spouts and bolts are replicated in 

tasks, each task executed in 

parallel by a worker 

– User-defined degree of 

replication 

– All pairwise combinations are 

possible between tasks 

• When a task emits a tuple, which 

task should it send to? 

• Stream groupings dictate how to 

propagate tuples 

– Shuffle grouping: round-robin

– Field grouping: based on the 

data value (e.g., range 

partitioning) 

spout spout

boltbolt

bolt



www.inf.ed.ac.uk

Shuffle Grouping

spout

Task 1

Task 2

Task 3

Bolt A

Task 1

Task 2

Task 3

Bolt B

Tuple { word: “Hello” }

Tuple 

{ word: “Hello” }

Tuple { word: “World” }



www.inf.ed.ac.uk

Field Grouping

spout

Task 1

Task 2

Task 3

Bolt A

Task 1

Task 2

Task 3

Bolt B

Tuple { word: “Hello” }

Tuple { word: “World” }

Tuple 

{ word: “Hello” }



www.inf.ed.ac.uk

Global Grouping

spout

Task 1

Task 2

Task 3

Bolt A

Task 1

Task 2

Task 3

Bolt B

Tuple { word: “Hello” }

Tuple { word: “World” }

Tuple 

{ word: “Hello” }



www.inf.ed.ac.uk

All Grouping

spout

Task 1

Task 2

Bolt A

Task 1

Task 2

Bolt B

Tuple { word: “Hello” }

Tuple 

{ word: “Hello” }

Tuple { word: “World” }

Tuple 

{ word: “World” }



www.inf.ed.ac.uk

Storm Architecture

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker



www.inf.ed.ac.uk

Storm Workflow

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

Storm topology 

submitted1



www.inf.ed.ac.uk

Storm Workflow

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

Gather tasks and 

evenly distribute 

to supervisors

2



www.inf.ed.ac.uk

Storm Workflow

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

Start Processing3



www.inf.ed.ac.uk

Failure Recovery

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

• Supervisors send regular 

heartbeats to nimbus

• When heartbeat stops, nimbus 

assigns tasks to other 

supervisors



www.inf.ed.ac.uk

Failure Recovery

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

• Supervisors send regular 

heartbeats to nimbus

• When heartbeat stops, nimbus 

assigns tasks to other 

supervisor



www.inf.ed.ac.uk

Failure Recovery

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

• Should the Nimbus fail, 

supervisors keep working on 

their assigned tasks



www.inf.ed.ac.uk

Zookeeper: distributed reliable storage and coordination

• Design goals

– Distributed coordination service 

– Hierarchical name space 

– All state kept in main memory, replicated 

across servers 

– Read requests are served by local replicas 

– Client writes are propagated to the leader 

– Changes are logged on disk before applied 

to in-memory state 

– Leader applies the write and forwards to 

replicas 

• Guarantees

– Sequential consistency: updates from a 

client will be applied in the order that they 

were sent 

– Atomicity: updates either succeed or fail; 

no partial results 

– Single system image: clients see the same 

view of the service regardless of the server 

– Reliability: once an update has been 

applied, it will persist from that time forward 

– Timeliness: the clients’ view of the system 

is guaranteed to be up-to-date within a 

certain time bound 

client client client client client client client

server server server server server

leader



www.inf.ed.ac.uk

Putting it all together: word count
// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)

.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count", new WordCount(), 12)

.fieldsGrouping("split", new Fields("word")); // field grouping 

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count", conf, builder.createTopology());



www.inf.ed.ac.uk

Summary

• Introduction to Apache Storm low latency 

stream processing

• Storm topology consisting of Spouts and Bolts

• Storm Architecture


