Data Stream Processing

Part [l

Data Streams (recap)

items

O
]
u
u
|
(]

BEEEROODO
Dooooo

oomO OoCO0OEEEEORORCO0O0CEROE
OO0COeO00000CO000COEERRORO0O0O0O0CREO0O
OO0O00OE000CO000EEEEOO0ORCO0O0CEROCR
OESORdEE00ECE00EEECOROERECOECRCR
OO0 00eEEE00OEEd0ECONE N

>

o0
1
Oom
B0
Oom
Oom
0o
Oom
om
] |

stream

@ continuous, unbounded sequence of items
@ unpredictable arrival times

@ too large to store locally

@ one pass real time processing required

Reservoir Sampling (recap)

Reservoir

] \

r/N r/N r/N r/N r/N

HENNN
>

Stream

@ create representative sample of incoming data items N

@ uniformly sample into reservoir of size r

Today
Counting algorithms based on stream
windows

Lossy Counting
Sticky Sampling

Stream Windows

@00000000

Stream Windows

Mechanism for extracting a finite relation from an
infinite stream.

Stream Windows

0O@0000000

Window Example

past
—

adjulwswy

future

ujgdedIl

Stream Windows

>

stream

[e]e] lele]ele]ele]

Window Example

past future
4‘_______
adjuwswyjujgdedlI
>
stream

adjuw|swyujljgded|I
>

stream

Stream Windows

[e]e] lele]ele]ele]

Window Example

past future
adjuwswyjujgdedlI

>

stream

adjuw|swyujljgded|I
>

stream

adjuwswyujgded|I
>

stream

Stream Windows

[e]e] lele]ele]ele]

Window Example

past future
<

adjuwswyjujgdedlI
>

stream

adjuw|swyujljgded|I
>

stream

adjuwswyujgded|I
>

stream

Sliding Window

Window Types

@ assumes existences of some attribute that defines the order of
the stream elements (e.g. time)

@ w is the window length (size) expressed in units of the
ordering attribute (e.g. seconds)

Sliding Window

>

t-t=w

Stream Windows

[e]e]e] le]elelele]

Window Types

@ assumes existences of some attribute that defines the order of
the stream elements (e.g. time)

@ w is the window length (size) expressed in units of the
ordering attribute (e.g. seconds)

Sliding Window

>

ot ot ottt ot

t-t=w

Tumbling Window

4 t ty >

i -t=w

Stream Windows

[e]e]e] le]elelele]

Count based Windows

Ordering attribute can cause problems for duplicates
(e.g. same time stamps)

Use count based windows instead

Stream Windows

[e]e]e]e] lelelele]

Count based Windows

Ordering attribute can cause problems for duplicates
(e.g. same time stamps)

Use count based windows instead

Count based Window

>

t ot ot t, ot

Count based windows are potentially unpredicatable with respect to
fluctuation in input rates.

Stream Windows

[e]e]e]e] lelelele]

Punctuation based Windows

Split windows based on punctuations in the data

Punctuation based Window

[11 Dol TP 1 Il § 1 11 f\n >

Stream Windows

[e]e]e]e]e] lelele]

Punctuation based Windows

Split windows based on punctuations in the data

Punctuation based Window

[11 Dol TP 1 Il § 1 11 f\n >

Potentially problematic if windows grow too large or too small.

Stream Windows

[e]e]e]e]e] lelele]

Window Standing Query Example

What is the average of the integers in the window?

Stream of integers

Window of size w = 4

o

o

e Count based sliding window

o for the first w inputs, sum and count
o

afterwards change average by adding (i — j)/w to the previous
window average

Stream Windows

000000800

Window Standing Query Example

1354/89314275687
>

stream

113548(9314275687
>

stream

13/5489|1314275687
>

stream

Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

113548(9314275687
>

stream

13/5489|1314275687
>

stream

Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

3.25+ =4
135489314275687 with i newest value, j

oldest value

stream

13/5489|1314275687
>

stream

Window Standing Query Example

1354/89314275687 Li34544 _ 3 95

stream ..
3.25 + %
1135489314275687 with i newest value, j
oldest value
>
stream H%r# + % —5

13/5489|1314275687
>

stream

Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

3.25+ =4
135489314275687 with i newest value, j

oldest value

stream 1+3+4544 | 8—-1 __
;g T =9

1364809[314275687 .., .
>

stream

Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

3.25+ =4
135489314275687 with i newest value, j

oldest value

stream %#4_%:5
135489314275687 .,
' o

stream

Datastructure?

Window Average

#!/usr/bin/env python2

import sys

import Queue

WINDOW = 4

elems = Queue.Queue()

elem_sum = 0

for i in range(WINDOW): # initial average
val = int(sys.stdin.readline().strip())
elems.put(val)
elem_sum += val

avg = float(elem_sum) / WINDOW
for line in sys.stdin:
print (avg)
val = int(line.strip())
avg = avg + (val - elems.get())/float(WINDOW)
elems.put(val)

Stream Windows

0O0000000e

Window Average

#!/usr/bin/env python2

import sys

import Queue

WINDOW = 4

elems = Queue.Queue()

elem_sum = 0

for i in range(WINDOW): # initial average
val = int(sys.stdin.readline().strip())
elems.put(val)
elem_sum += val

avg = float(elem_sum) / WINDOW
for line in sys.stdin:
print (avg)
val = int(line.strip())
avg = avg + (val - elems.get())/float(WINDOW)
elems.put(val)

Allows calculation in a single pass of each element.

Stream Windows
00000000e

Window based Algorithm

Lossy Counting

Problem Description

Maintain a count of distinct
elements seen so far

Lossy Counting

O@000000000000

Problem Description

Maintain a count of distinct
elements seen so far

Examples:
@ Google web crawler counting URL encounters.
@ Detecting spam pages through content analysis.

@ User login rankings to web services.

Lossy Counting

O@000000000000

Problem Description

Maintain a count of distinct
elements seen so far

Examples:
@ Google web crawler counting URL encounters.
@ Detecting spam pages through content analysis.

@ User login rankings to web services.

Straight forward solution: Hashtable

Lossy Counting

O@000000000000

Problem Description

Maintain a count of distinct
elements seen so far

Examples:
@ Google web crawler counting URL encounters.
@ Detecting spam pages through content analysis.

@ User login rankings to web services.

Straight forward solution: Hashtable

Too large for memory, too slow on disk

Lossy Counting

O@000000000000

Algorithm Parameters

Environment Parameters

o Elements seen so far N

User-specified Parameters
@ support threshold s € (0,1)

@ error parameter ¢ € (0,1)

Lossy Counting

0O0@00000000000

Algorithm Guarantees

O All items whose true frequency exceeds sN are output. There
are no false negatives.

@ No items whose true frequency is less than (s — €)N is output.

© Estimated frequencies are less than the true frequencies by at
most e/N.

Lossy Counting

0008000000000 0

Example

With s = 10%, € = 1%, N = 1000

Lossy Counting

0O000@000000000

Example

With s = 10%, € = 1%, N = 1000

@ All elements exceeding frequency sN = 100 will be output.

Lossy Counting

0O000@000000000

Example

With s = 10%, € = 1%, N = 1000

@ All elements exceeding frequency sN = 100 will be output.

@ No elements with frequencies below (s — ¢)N = 90 are output.

False positives between 90 and 100 might or might not be
output.

Lossy Counting

0O000@000000000

Example

With s = 10%, € = 1%, N = 1000

All elements exceeding frequency s\ = 100 will be output.

No elements with frequencies below (s — €)N = 90 are output.
False positives between 90 and 100 might or might not be
output.

All estimated frequencies diverge from their true frequencies by
at most e/l = 10 instances.

Lossy Counting

0O000@000000000

Example

With s = 10%, € = 1%, N = 1000

All elements exceeding frequency sN = 100 will be output.

No elements with frequencies below (s — €)N = 90 are output.
False positives between 90 and 100 might or might not be
output.

All estimated frequencies diverge from their true frequencies by
at most e/l = 10 instances.

Rule of thumb: e = 0.1s

Lossy Counting

0O000@000000000

Expected Errors

@ high frequency false positives

@ small errors in frequency estimations

Lossy Counting

0O0000e00000000

Expected Errors

@ high frequency false positives

@ small errors in frequency estimations

Acceptable for high numbers of N

Lossy Counting

0O0000e00000000

Lossy Counting in Action

OEECEE0EENR
OEOE0o0ocOmE
OO00CONEEER
Oo0o0oco0ooooo
ODoo0CcoooceE®
ODO00CO0O0Ooooo
DooCoooBooO
OECEEECdEENR
EEC00O000CEN
OO0COEEEEOCO0
OOEEO0O000mO
EEECEEERCE
ENEEEEEEER
ENEEEEEEER
OO0CCONERER
0000000000 4
DoSEE0OO0O0oO
OoocoOoO0oo@E
DEEEOCOOCOO
ODO00COooOcom
DooCo0oobooo
ODO00CO0OoOobo0o
OEEEE0EEN
ERC0O0O000CENE
OO0CEEEECO0O
OOoEEO0o00omO
EEECEEEERCE
OO0OmO0000Ben
O0O00COoO0OCEm
OEEERE0Oooo
OEECEE0EEN
OeOEO0O00COm

—_—
swayl

A

stream

Incoming Stream of Colours

[o]
[o]
[o]
[o]
[o]
[o]
(o]
[
(o]
[o]
o]
[o]
[o]
[e]

[
c
B
c
3
o
o
>
n
u
o
-

Divide into Windows/Buckets

window 1

oooooOmoOmEO
EERCORO0OENE
OERCOmREO000
ECRCOROERCON
OEEfOECEOE
OEECOE0OEONm
OoCoOmOmO0O
OECO0ORO000Om
OpdEO0EOER
EROROEOCOER

window 2

OooE0cEcOmE
ODooECcE0cCEE
Odo0ECE0CEE
dO0O0SoCcEo00dmm
DooO0cE0odmEm

mimiminininin] | |
OoodEcOEE
dO0o0E00EENR
OO0oO0E00EENm

window 3

000000800

E0E0EO0O0O00O.
E0R000000.
E000EOO00O0OM
]) | Ieimisim] |
E00EE00E0ON

Window Size w = E] =

Lossy Counting

0000000000000

[567] = 100

E00000EOEO
EEEOEECOEEDO

First Window Comes In

ENIDOEOEE
EEECEEOEED
mmimiml 111 1 |m
ERIODDDEEE
IREODEEODOmE
HEEEEOEENR
OEEOEOEEOE
mimiml | 1 | sl
ERIOEEOCOER
EEEEEEOED

First Window

Empty Counts _Frequency Counts

Go through elements. If counter exists, increase by one, if not
create one and initialise it to one.

Lossy Counting

0O0000000e00000

Adjust Counts at Window Boundaries

—Frequency Counts —Frequency Counts

Reduce all counts by one. If counter is zero for a specific
element, drop it.

Lossy Counting
000000000 e0000 42

Next Window Comes In

o o o o o o o
ONDDEDEEEE
o oo o o
o o
s EEEOOOOOOO
i i o o o o
o o o
EEEEROO000
ENEEEEEEER
AEEEEEEEER

P
[¢V)
X
-

indow

e

Frequency Counts Frequency Counts

Count elements and adjust counts afterwards.

Lossy Counting
000000000 0e000 43

Lossy Counting Summary

@ Split Stream into Windows

@ For each window: Count elements, if no counter exists, create
one.

e At window boundaries: Reduce all frequencies by one. If
frequency goes to zero, drop counter.

@ Process next window ...

Lossy Counting

00000000000 e00

Lossy Counting Summary

@ Split Stream into Windows

@ For each window: Count elements, if no counter exists, create
one.

e At window boundaries: Reduce all frequencies by one. If
frequency goes to zero, drop counter.

@ Process next window ...

Data structure to save counters:

Lossy Counting

00000000000 e00

Lossy Counting Summary

@ Split Stream into Windows

@ For each window: Count elements, if no counter exists, create
one.

e At window boundaries: Reduce all frequencies by one. If
frequency goes to zero, drop counter.

@ Process next window ...

Data structure to save counters:
Hashtable<Color,Integer>

Lossy Counting

00000000000 e00

Output

With s = 10%, ¢ = 1%, N = 200

output
threshold
24 [T T T T I T T T T

22 T

P2 A

e

False Output

Positive

_Frequency Counts

To reduce false positives to acceptable amount, only
output counters with frequency f > (s — €)N = 18.

Lossy Counting

00000000000 0e0

Accuracy Improvement

Reduction step of counters follows the approach of reducing all
counters by one. An improved version maintains exact
frequencies and remembers for each counter at which window
id it was created. At window boundaries, counters are only
removed when their frequency falls below a certain level in
relation to their window id.

(Color, Integer,WindowlID)

See paper for details.

G. S. Manku, R. Motwani. Approximate Frequency Counts over
Data Streams, VLDB, 2002.

Lossy Counting

0000000000000

Window based Algorithm

Sticky Sampling

Problem Description

Counting algorithm using a
sampling approach.

Probabilistic sampling decides if a counter for a
distinct element is created.

If a counter exists for a certain element, every future
instance of this element will be counted.

Algorithm Parameters

Environment Parameters

@ Elements seen so far N

User-specified Parameters
@ support threshold s € (0,1)
@ error parameter € € (0,1)
@ probability of failure 6 € (0,1)

The algorithm is probabilistic and fails if any of the
three guarantees is not satisfied.

Sticky Sampling
[ee] lelelelelelele]e] 51

Algorithm Guarantees

@ All items whose true frequency exceeds sN are output. There
are no false negatives.

@ No items whose true frequency is less than (s — €)/N is output.

© Estimated frequencies are less than the true frequencies by at
most e/V.

Guarantees and thereby expected errors are the same
as for Lossy Counting. Except for the small
probability that it might fail to provide correct
answers.

Sticky Sampling
[ee]e] lelelelelele]e] 52

Sticky Sampling in Action

DOCROE00OeRREO0O0OR0O0O0O0O00O8
DO00o0E0O0EER00EREOO0OOOEE
D000 ECOEERR000000000.
Do0E0ECOERORE0RO0O0O0O0OmO
E00000000EEE0ORORO000000.
0000 00CCCAERROEOROO0OCCOEROE
OOef000000000OeERRORO0O00O00OWO0
OO00OE000CCE00EEEEOO0OECOO0CEC R
OO CEEDO0ECE00EER O OEECDOECEOE
00000000 0eEEe00Eefd00E0EN

=

m0
EE
od
Oom
O

items

0 0000EOEDO
Ooooooo

O
O
O
O
O
O
O
O
O

stream

Incoming Stream of Colours

Sticky Sampling
[e]e]ele] Telelelele]e] 53

Divide into Windows/Buckets

mims] | | | e

window 3

[mim| | [mjsjsjs] [

window 2

window 1

OomEm0fEmO
OEEEEEEN
OmORfdf0d0Om
) |]| | ===
OdNENOEEEE
gommfooEmOo
OofdfooOEEm
ONEERRCIO00]
ERCEAOCOEN
ofmmmEmirf]
EEECEEENC N
OoOmOOOE®no
OdNEOOEEmm
OoOmmmmtog
OoOmmmmtog

OdNENOEEEE
) |]] | ===
OEfOEEEEEN
ER(EEOOEE
OoOmmmmtog
OomEm0fEmO
EEECEEENC N
OO0O0mEOOEEO

OdNEOOEEEE

) |]| | ===
OEEEEEEN
OmORO0O0fd00Om

w = 4t

w =2t

tlog (55)
With s = 10%, e = 1%,6 = 0.1%

€

Dynamic window size with t

921

~
~

t

54

1)
£
o

£

a
0

>
<

U
B
0

[e]e]e]e]o] lele]elele)

A Window Comes in

mns] | | e

window 3

Oomm000Om0

window 2

window 1

Oommo0C0OomO
O EECEEN
OmOeO0fdCcoOm
ml |]] | |Ess
OooodoCcOmm
OommfOooOomO
oooooooOmm
ml 11| | e
EROCOO00mE
OofommEEmcr]
EEECEEENCN
OoOmO0b0OooO
OooodoCcOmm
OoOmmmmiog
OoOmmmmiog

OooodoCcOmm
ml |]] | |Ess
ORCOEEECEEN
ERCUOO000mE
OoOmmmmiog
Oommo0C0OomO
EEECEEENCN
ooOmOoofnonan

OooooOoCOmm

ml |]] | |Ess
O EECEEN
OmOmOf0C0O0Om

Go through elements. If counter exists, increase it. If not,
create a counter with probability % and initialise it to one.

Sampling rate r grows in proportion to window size.

Sticky Sampling
00000080000

55

Adjust Counts at Window Boundaries

X

X

XXX

—Frequency Counts

—Frequency Counts

Go through elements of
each counter. Toss coin, if
unsuccessful remove
element, otherwise move
on to next counter. If
counter becomes zero,
drop it.

Ensures uniform
sampling

Sticky Sampling
0O000000e000 56

Sticky Sampling Summary

@ Split stream into windows, doubling window size of each new
window

@ For each window: Go through elements if counter exists,
increase it. If not, create one with probability % with r growing
at the same rate as window size.

@ At window boundaries: Reduce all frequencies by tossing an
unbiased coin for each counted element. Remove element if
coin toss unsuccessful, otherwise move on to next counter. If
frequency goes to zero, drop counter.

@ Process next window ...

Sticky Sampling

00000000800

Output

Same principle as Lossy Counting

To reduce false positives to acceptable amount, only
output counters with frequency f > (s — €)N.

Sticky Sampling
00000000080 58

Lossy Counting vs. Sticky Sampling

Feature ‘ Lossy Counting ‘ Sticky Sampling
Results deterministic probabilistic
Memory | grows with N | static (independent of N)
Theory | performs worse performs better
Practice | performs better performs worse

performance in terms of memory and accuracy

Sticky Sampling
0000000000 e 59

	Stream Windows
	Lossy Counting
	Sticky Sampling

