Data Stream Processing

Part [l




Data Streams (recap)
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stream

@ continuous, unbounded sequence of items
@ unpredictable arrival times

@ too large to store locally

@ one pass real time processing required



Reservoir Sampling (recap)

Reservoir
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Stream

@ create representative sample of incoming data items N

@ uniformly sample into reservoir of size r



Today
Counting algorithms based on stream
windows

Lossy Counting
Sticky Sampling

Stream Windows
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Stream Windows

Mechanism for extracting a finite relation from an
infinite stream.

Stream Windows
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Window Example
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Window Example

past future
4‘_______
adjuwswyjujgdedlI
>
stream

adjuw|swyujljgded|I
>

stream

Stream Windows
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Window Example

past future
adjuwswyjujgdedlI

>

stream

adjuw|swyujljgded|I
>

stream

adjuwswyujgded|I
>

stream

Stream Windows
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Window Example

past future
<

adjuwswyjujgdedlI
>

stream

adjuw|swyujljgded|I
>

stream

adjuwswyujgded|I
>

stream

Sliding Window




Window Types

@ assumes existences of some attribute that defines the order of
the stream elements (e.g. time)

@ w is the window length (size) expressed in units of the
ordering attribute (e.g. seconds)

Sliding Window

>

t-t=w

Stream Windows
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Window Types

@ assumes existences of some attribute that defines the order of
the stream elements (e.g. time)

@ w is the window length (size) expressed in units of the
ordering attribute (e.g. seconds)

Sliding Window

>

ot ot ottt ot

t-t=w

Tumbling Window

4 t ty >

i -t=w

Stream Windows
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Count based Windows

Ordering attribute can cause problems for duplicates
(e.g. same time stamps)

Use count based windows instead

Stream Windows
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Count based Windows

Ordering attribute can cause problems for duplicates
(e.g. same time stamps)

Use count based windows instead

Count based Window

>

t ot ot t, ot

Count based windows are potentially unpredicatable with respect to
fluctuation in input rates.

Stream Windows
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Punctuation based Windows

Split windows based on punctuations in the data

Punctuation based Window

[ 11 Dol TP 1 Il § 1 11 f\n >

Stream Windows
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Punctuation based Windows

Split windows based on punctuations in the data

Punctuation based Window

[ 11 Dol TP 1 Il § 1 11 f\n >

Potentially problematic if windows grow too large or too small.

Stream Windows
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Window Standing Query Example

What is the average of the integers in the window?

Stream of integers

Window of size w = 4

o

o

e Count based sliding window

o for the first w inputs, sum and count
o

afterwards change average by adding (i — j)/w to the previous
window average

Stream Windows
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Window Standing Query Example

1354/89314275687
>

stream

113548(9314275687
>

stream

13/5489|1314275687
>

stream




Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

113548(9314275687
>

stream

13/5489|1314275687
>

stream




Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

3.25+ =4
135489314275687 with i newest value, j

oldest value

stream

13/5489|1314275687
>

stream




Window Standing Query Example

1354/89314275687 Li34544 _ 3 95

stream ..
3.25 + %
1135489314275687 with i newest value, j
oldest value
>
stream H%r# + % —5

13/5489|1314275687
>

stream




Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

3.25+ =4
135489314275687 with i newest value, j

oldest value

stream 1+3+4544 | 8—-1 __
;g T =9

1364809[314275687 .., .
>

stream




Window Standing Query Example

1354/89314275687 Li34544 _ 3 95
>

stream

3.25+ =4
135489314275687 with i newest value, j

oldest value

stream %#4_%:5
135489314275687 .,
' o

stream

Datastructure?




Window Average

#!/usr/bin/env python2

import sys

import Queue

WINDOW = 4

elems = Queue.Queue()

elem_sum = 0

for i in range(WINDOW): # initial average
val = int(sys.stdin.readline().strip())
elems.put(val)
elem_sum += val

avg = float(elem_sum) / WINDOW
for line in sys.stdin:
print (avg)
val = int(line.strip())
avg = avg + (val - elems.get())/float(WINDOW)
elems.put(val)

Stream Windows
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Window Average

#!/usr/bin/env python2

import sys

import Queue

WINDOW = 4

elems = Queue.Queue()

elem_sum = 0

for i in range(WINDOW): # initial average
val = int(sys.stdin.readline().strip())
elems.put(val)
elem_sum += val

avg = float(elem_sum) / WINDOW
for line in sys.stdin:
print (avg)
val = int(line.strip())
avg = avg + (val - elems.get())/float(WINDOW)
elems.put(val)

Allows calculation in a single pass of each element.

Stream Windows
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Window based Algorithm

Lossy Counting




Problem Description

Maintain a count of distinct
elements seen so far

Lossy Counting
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Problem Description

Maintain a count of distinct
elements seen so far

Examples:
@ Google web crawler counting URL encounters.
@ Detecting spam pages through content analysis.

@ User login rankings to web services.

Lossy Counting
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Problem Description

Maintain a count of distinct
elements seen so far

Examples:
@ Google web crawler counting URL encounters.
@ Detecting spam pages through content analysis.

@ User login rankings to web services.

Straight forward solution: Hashtable

Lossy Counting
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Problem Description

Maintain a count of distinct
elements seen so far

Examples:
@ Google web crawler counting URL encounters.
@ Detecting spam pages through content analysis.

@ User login rankings to web services.

Straight forward solution: Hashtable

Too large for memory, too slow on disk

Lossy Counting
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Algorithm Parameters

Environment Parameters

o Elements seen so far N

User-specified Parameters
@ support threshold s € (0,1)

@ error parameter ¢ € (0,1)

Lossy Counting
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Algorithm Guarantees

O All items whose true frequency exceeds sN are output. There
are no false negatives.

@ No items whose true frequency is less than (s — €)N is output.

© Estimated frequencies are less than the true frequencies by at
most e/N.

Lossy Counting
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Example

With s = 10%, € = 1%, N = 1000

Lossy Counting
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Example

With s = 10%, € = 1%, N = 1000

@ All elements exceeding frequency sN = 100 will be output.

Lossy Counting
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Example

With s = 10%, € = 1%, N = 1000

@ All elements exceeding frequency sN = 100 will be output.

@ No elements with frequencies below (s — ¢)N = 90 are output.

False positives between 90 and 100 might or might not be
output.

Lossy Counting
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Example

With s = 10%, € = 1%, N = 1000

All elements exceeding frequency s\ = 100 will be output.

No elements with frequencies below (s — €)N = 90 are output.
False positives between 90 and 100 might or might not be
output.

All estimated frequencies diverge from their true frequencies by
at most e/l = 10 instances.

Lossy Counting
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Example

With s = 10%, € = 1%, N = 1000

All elements exceeding frequency sN = 100 will be output.

No elements with frequencies below (s — €)N = 90 are output.
False positives between 90 and 100 might or might not be
output.

All estimated frequencies diverge from their true frequencies by
at most e/l = 10 instances.

Rule of thumb: e = 0.1s

Lossy Counting
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Expected Errors

@ high frequency false positives

@ small errors in frequency estimations

Lossy Counting
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Expected Errors

@ high frequency false positives

@ small errors in frequency estimations

Acceptable for high numbers of N

Lossy Counting
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Lossy Counting in Action

OEECEE0EENR
OEOE0o0ocOmE
OO00CONEEER
Oo0o0oco0ooooo
ODoo0CcoooceE®
ODO00CO0O0Ooooo
DooCoooBooO
OECEEECdEENR
EEC00O000CEN
OO0COEEEEOCO0
OOEEO0O000mO
EEECEEERCE
ENEEEEEEER
ENEEEEEEER
OO0CCONERER
0000000000 4
DoSEE0OO0O0oO
OoocoOoO0oo@E
DEEEOCOOCOO
ODO00COooOcom
DooCo0oobooo
ODO00CO0OoOobo0o
OEEEE0EEN
ERC0O0O000CENE
OO0CEEEECO0O
OOoEEO0o00omO
EEECEEEERCE
OO0OmO0000Ben
O0O00COoO0OCEm
OEEERE0Oooo
OEECEE0EEN
OeOEO0O00COm

—_—
swayl

A

stream

Incoming Stream of Colours

[o]
[o]
[o]
[o]
[o]
[o]
(o]
[
(o]
[o]
o]
[o]
[o]
[e]

[
c
B
c
3
o
o
>
n
u
o
-




Divide into Windows/Buckets

window 1
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Lossy Counting
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First Window Comes In
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First Window

Empty Counts _Frequency Counts

Go through elements. If counter exists, increase by one, if not
create one and initialise it to one.

Lossy Counting
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Adjust Counts at Window Boundaries

—Frequency Counts —Frequency Counts

Reduce all counts by one. If counter is zero for a specific
element, drop it.

Lossy Counting
000000000 e0000 42



Next Window Comes In
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Frequency Counts Frequency Counts

Count elements and adjust counts afterwards.

Lossy Counting
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Lossy Counting Summary

@ Split Stream into Windows

@ For each window: Count elements, if no counter exists, create
one.

e At window boundaries: Reduce all frequencies by one. If
frequency goes to zero, drop counter.

@ Process next window ...

Lossy Counting
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Lossy Counting Summary

@ Split Stream into Windows

@ For each window: Count elements, if no counter exists, create
one.

e At window boundaries: Reduce all frequencies by one. If
frequency goes to zero, drop counter.

@ Process next window ...

Data structure to save counters:

Lossy Counting
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Lossy Counting Summary

@ Split Stream into Windows

@ For each window: Count elements, if no counter exists, create
one.

e At window boundaries: Reduce all frequencies by one. If
frequency goes to zero, drop counter.

@ Process next window ...

Data structure to save counters:
Hashtable<Color,Integer>

Lossy Counting
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Output

With s = 10%, ¢ = 1%, N = 200

output
threshold
24 [T T T T I T T T T

22 T

P2 A

e

False Output

Positive

_Frequency Counts

To reduce false positives to acceptable amount, only
output counters with frequency f > (s — €)N = 18.

Lossy Counting
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Accuracy Improvement

Reduction step of counters follows the approach of reducing all
counters by one. An improved version maintains exact
frequencies and remembers for each counter at which window
id it was created. At window boundaries, counters are only
removed when their frequency falls below a certain level in
relation to their window id.

(Color, Integer,WindowlID)

See paper for details.

G. S. Manku, R. Motwani. Approximate Frequency Counts over
Data Streams, VLDB, 2002.

Lossy Counting
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Window based Algorithm

Sticky Sampling




Problem Description

Counting algorithm using a
sampling approach.

Probabilistic sampling decides if a counter for a
distinct element is created.

If a counter exists for a certain element, every future
instance of this element will be counted.




Algorithm Parameters

Environment Parameters

@ Elements seen so far N

User-specified Parameters
@ support threshold s € (0,1)
@ error parameter € € (0,1)
@ probability of failure 6 € (0,1)

The algorithm is probabilistic and fails if any of the
three guarantees is not satisfied.

Sticky Sampling
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Algorithm Guarantees

@ All items whose true frequency exceeds sN are output. There
are no false negatives.

@ No items whose true frequency is less than (s — €)/N is output.

© Estimated frequencies are less than the true frequencies by at
most e/V.

Guarantees and thereby expected errors are the same
as for Lossy Counting. Except for the small
probability that it might fail to provide correct
answers.

Sticky Sampling
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Sticky Sampling in Action
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Incoming Stream of Colours

Sticky Sampling
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Divide into Windows/Buckets
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w = 4t

w =2t

tlog (55)
With s = 10%, e = 1%,6 = 0.1%
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Dynamic window size with t
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A Window Comes in
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Go through elements. If counter exists, increase it. If not,
create a counter with probability % and initialise it to one.

Sampling rate r grows in proportion to window size.

Sticky Sampling
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Adjust Counts at Window Boundaries

X

X

XXX

—Frequency Counts

—Frequency Counts

Go through elements of
each counter. Toss coin, if
unsuccessful remove
element, otherwise move
on to next counter. If
counter becomes zero,
drop it.

Ensures uniform
sampling

Sticky Sampling
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Sticky Sampling Summary

@ Split stream into windows, doubling window size of each new
window

@ For each window: Go through elements if counter exists,
increase it. If not, create one with probability % with r growing
at the same rate as window size.

@ At window boundaries: Reduce all frequencies by tossing an
unbiased coin for each counted element. Remove element if
coin toss unsuccessful, otherwise move on to next counter. If
frequency goes to zero, drop counter.

@ Process next window ...

Sticky Sampling
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Output

Same principle as Lossy Counting

To reduce false positives to acceptable amount, only
output counters with frequency f > (s — €)N.

Sticky Sampling
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Lossy Counting vs. Sticky Sampling

Feature ‘ Lossy Counting ‘ Sticky Sampling
Results deterministic probabilistic
Memory | grows with N | static (independent of N)
Theory | performs worse performs better
Practice | performs better performs worse

performance in terms of memory and accuracy

Sticky Sampling
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