'
@) THE UNIVERSITY of EDINBURGH

€D informatics

Extreme Computing
Beyond MapReduce

www.inf.ed.ac.uk

Vi
S
,5?) 7> THE UNIVERSITY of EDINBURGH

¢y informatics
Today’s agenda

« Making Hadoop more efficient
« Tweaking the MapReduce programming model
- Beyond MapReduce

www.inf.ed.ac.uk

" THE UNIVERSITY of EDINBURGH

. informatics

MORE EXPRESSIVE PROCESSING
USING MAPREDUCE

www.inf.ed.ac.uk

QNLV
“ w’z\ THE UNIVERSITY quDINBURGH

) informatics
We’ve seen this before

 MapReduce is a step backward in database access
— Schemas are good
— Separation of the schema from the application is good

— High-level access languages are good

MapReduce is poor implementation
— Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
— Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DMBS tools

www.inf.ed.ac.uk

70 535MB/node 1TB/cluster

seconds
- N W B~ O
OO O O O o

o

1 10 25 50 100 25 50 100
nodes nodes

. Vertica . RDBMS . Hadoop

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

www.inf.ed.ac.uk
Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. RDBMS: select

160
140
»n 120

80
60
40
20

second

1 10 25 50 100
nodes

. Vertica . RDBMS . Hadoop

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

www.inf.ed.ac.uk
Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. RDBMS: aggregation

160 2.5M groups 1400 2k groups
1 10 25 50 100 1 10 25 50 100
nodes nodes

. Vertica . RDBMS . Hadoop

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourcelIP;

www.inf.ed.ac.uk
Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

1 10 25 50 100
nodes

B vertica i roBMs [} Hadoop

www.inf.ed.ac.uk
Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

S
,5? A 2@) - THE UNIVERSITY of EDINBURGH

¢ informatics
Why?

« Schemas are a good idea
— Parsing fields out of flat text files is slow
— Schemas define a contract, decoupling logical from physical
« Schemas allow for building efficient auxiliary structures
— Value indexes, join indexes, etc.
 Relational algorithms have been optimised for the underlying system
— The system itself has complete control of performance-critical decisions

— Storage layout, choice of algorithm, order of execution, etc.

www.inf.ed.ac.uk

S
B

-
T
z

<

\". THE UNIVERSITY of EDINBURGH

informatics
Alleviating schema absence: thrift

 Originally developed by Facebook, now an Apache project

* Provides a Data Definition Language (DDL) with numerous language
bindings

— Compact binary encoding of typed structs
— Fields can be marked as optional or required
— Compiler automatically generates code for manipulating messages
* Provides Remote Procedure Call (RPC) mechanisms for service definitions

 Alternatives include protobufs and Avro

www.inf.ed.ac.uk

HE UNIVERSITY of EDINBURGH

informatics

Thrift

Client Server

struct Tweet {

1: required 132 userld;

2: required string userName;
3: required string text;

4. optional Location loc;

Generated code

}

struct Location {
1: required double latitude;

2: required double longitude;

TTransport

. . }

www.inf.ed.ac.uk

Storage layout: row vs. column stores

Row store

Column store

www.inf.ed.ac.uk

Vi
&) THE UNIVERSITY of EDINBURGH

e informatics
Storage layout: row vs. column stores

* Row stores

— Easy to modify a record

— Might read unnecessary data when processing
« Column stores

— Only read necessary data when processing

— Tuple writes require multiple accesses

www.inf.ed.ac.uk

oL
S
,:zf°) 7> THE UNIVERSITY of EDINBURGH

¢y informatics
Advantages of column stores

Read efficiency

— If only need to access a few columns, no need to drag around the rest
of the values

Better compression

— Repeated values appear more frequently in a column than repeated
rows appear

Vectorised processing
— Leveraging CPU architecture-level support

Opportunities to operate directly on compressed data

— For instance, when evaluating a selection; or when projecting a column

www.inf.ed.ac.uk

HE UNIVERSITY of EDINBURGH

informatics

Why not in Hadoop?

Relation

B HDFS

Block

> Row Group 1

Row Group 2

No reason why not

Row Group
16 Bytes Metadata
Sync Header

101, 102, 103, 104, 105

111,112, 113, 114, 115

121,122, 123,124,125

131,132, 133,134, 135

www.inf.ed.ac.uk

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

oL
S
,:zf°) 7> THE UNIVERSITY of EDINBURGH

Ay informatics

& <
DINB»‘>

Some small steps forward

 MapReduce is a step backward in database access:
— Schemas are good i/
— Separation of the schema from the application is good ‘/

— High-level access languages are good ?

MapReduce is poor implementation
— Brute force and only brute force (no indexes, for example) ‘/

MapReduce is not novel

MapReduce is missing features
— Bulk loader, indexing, updates, transactions... 7

MapReduce is incompatible with DMBS tools

www.inf.ed.ac.uk
Source: Blog post by DeWitt and Stonebraker

Vi
&) THE UNIVERSITY of EDINBURGH

8 informatics
Digging turther into Pig: basics

« Sequence of statements manipulating relations (aliases)
« Data model

— atoms

— tuples

— bags

— maps

— json

www.inf.ed.ac.uk

Vi
S
,5?) 7> THE UNIVERSITY of EDINBURGH

¢y informatics
Pig: common operations

« LOAD: load data

FOREACH ... GENERATE: per tuple processing
FILTER: discard unwanted tuples
GROUP/COGROUP: group tuples

JOIN: relational join

www.inf.ed.ac.uk

oL
S
,:zf°) 7> THE UNIVERSITY of EDINBURGH

Ay informatics

 Pig: GROUPing

A = LOAD 'myfile.txt’ AS (f1: int, f2: int, f3: int);

(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

X = GROUP A BY f1;

(1, {(1, 2, 3)})
(4, {(4, 2, 1), (4, 3, 3)})
(7, {(7, 2, 5)})
(8, {(8, 3, 4), (8, 4, 3)})

www.inf.ed.ac.uk

e,
&) THE UNIVERSITY of EDINBURGH

& informatics

Pig: COGROUPing

A: B:
(1, 2, 3) (2, 4)
(4, 2, 1) (8, 9)
(8, 3, 4) (1, 3)
(4, 3, 3) (2, 7)
(7, 2, 5) (2, 9)
(8, 4, 3) (4, 6)
(4, 9)

X = COGROUP A BY f1, B BY $0;

(1, {(1, 2, 3)}, {(1, 3)})

(2, {}, {(2, 4), (2, 7), (2, 9)})

(4) {(4J 2) 1)) (4) 3) 3)}.’ {(4) 6))(4J 9)})
(7, {(7, 2, 5)}, {})

(8) {(8) 3) 4)) (SJ 4) 3)}.’ {(SJ 9)})

www.inf.ed.ac.uk

QNLV
“ w’z\ THE UNIVERSITY quDINBURGH

) informatics
Pig UDFs

+ User-defined functions:
— Java
— Python
— JavaScript
— Ruby
- UDFs make Pig arbitrarily extensible
— Express core computations in UDFs

— Take advantage of Pig as glue code for scale-out plumbing

www.inf.ed.ac.uk

\". THE UNIVERSITY of EDINBURGH

&) informatics

& <
DINB»‘>

PageRank in Pig

previous pagerank = LOAD ‘$docs in’ USING PigStorage()
AS (url: chararray, pagerank: float,
links:{link: (url: chararray)});

outbound pagerank = FOREACH previous_ pagerank
GENERATE pagerank / COUNT(links) AS pagerank,
FLATTEN(links) AS to_url;

new_pagerank =
FOREACH (COGROUP outbound pagerank
BY to url, previous pagerank BY url INNER)
GENERATE group AS url,
(1 - $d) + $d * SUM(outbound pagerank.pagerank) AS
pagerank,
FLATTEN(previous_ pagerank.links) AS links;

STORE new_pagerank INTO ‘$docs out’ USING PigStorage();

www.inf.ed.ac.uk

3
,5? =@ THE UNIVERSITY of EDINBURGH

Ay informatics

& <
OrNBY

[terative computation

#!/usr/bin/python
from org.apache.pig.scripting import *
P = Pig.compile(""" Pig part goes here """)

params = { ‘d’: ‘0.5°, ‘docs _in’: ‘data/
pagerank data simple’ }

for i in range(10):
out = "out/pagerank data " + str(i + 1)
params["docs out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params).runSingle()
if not stats.isSuccessful():
raise ‘failed’
params["docs_in"] = out

www.inf.ed.ac.uk
From: http://techblug.wordpress.com/2011/07/29/pagerank-implementation-in-pig/

T m’,; THE UNIVERSITY of EDINBURGH

) informatics
Hadoop + DBs = HadoopDB

* Why not have the best of both worlds?
— Parallel databases focused on performance

— Hadoop focused on scalability, flexibility, fault tolerance
» Key ideas:
— Co-locate a RDBMS on every slave node
— To the extent possible, push down operations into the DB

www.inf.ed.ac.uk
Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB.

THE UNIVERSITY of EDINBURGH

- informatics

HadoopDB Architecture
MapReduce Job /[SMS planner J(i SQL query

Hadoop core

Master node N
MapReduce
HDFS Framework (g QU,
0 O a ple C adllO
atabase O eClo
7
Task with
InputFormat
Node 1 Node 2 Node n

TaskTracker TaskTracker TaskTracker

Data Data Data
Node Node Node
www.inf.ed.ac.uk

Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB.

3
4> THE UNIVERSITY of EDINBURGH

e informatics
MapReduce underperforms in iterative algorithms

 Java verbosity

Hadoop task startup time

Stragglers

Needless data shuffling

Checkpointing at each iteration

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

) informatics
Hal.oop architecture

c Task 1.1 Task 1.2
9

8 Task 2.1 |l Task 2.2
o

o

< Task 3.1 Task 3.2
‘é ® .0 _o Task scheduler Task tracker

= ;

] :

: B%

I Task queue Loop control Caching Indexing
= e :

L Distributed file system

2

(%))

Q@

iC Local file system

<€—— Remote communication <€—— |ocal communication

- Same as Hadoop . Modified from Hadoop - New in HaLoop

www.inf.ed.ac.uk
Source: Bu et al. (2010) HalLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

Standard iterative MapReduce

/ hoplica -
pRication Map function Stop condition

Reduce function

Yes

Hadoop MapReduce

www.inf.ed.ac.uk
Source: Bu et al. (2010) HalLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

T \". THE UNIVERSITY of EDINBURGH

g informatics

Hal.oop: loop-aware scheduling

p

Application

~

Map function Stop condition
Reduce function

N &

Hal.oop

Reduce

Source: Bu et al. (2010) HalLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

informatics
Hal.oop: optimizations

* Loop-aware scheduling
 Caching
— Reducer input for invariant data

— Reducer output speeding up convergence checks

www.inf.ed.ac.uk
Source: Bu et al. (2010) HalLoop: Efficient Iterative Data Processing on Large Clusters. VLDB.

S
,_Q?) 7> THE UNIVERSITY of EDINBURGH

Ay informatics

& <
DINB»‘>

Pregel: computational model

« Based on Bulk Synchronous Parallel (BSP)
— Computational units encoded in a directed graph
— Computation proceeds in a series of supersteps
— Message passing architecture
» Each vertex, at each superstep:
— Receives messages directed at it from previous superstep
— Executes a user-defined function (modifying state)
— Emits messages to other vertices (for the next superstep)
* Termination:
— A vertex can choose to deactivate itself
— Is “woken up” if new messages received

— Computation halts when all vertices are inactive

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

THE UNIVERSITY of EDINBURGH

)- informatics

Pregel

superstep ¢

superstep t+1

WV
T~

superstep t+2

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

S
,_Q?) 7> THE UNIVERSITY of EDINBURGH

Ay informatics

& <
OrNBY

Pregel: implementation

« Master-Slave architecture
— Vertices are hash partitioned (by default) and assigned to workers
— Everything happens in memory

* Processing cycle
— Master tells all workers to advance a single superstep

— Worker delivers messages from previous superstep, executing vertex
computation

— Messages sent asynchronously (in batches)

— Worker notifies master of number of active vertices
 Fault tolerance

— Checkpointing

— Heartbeat/revert

www.inf.ed.ac.uk
Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Ve
5‘“ “&) > THE UNIVERSITY of EDINBURGH

- informatics

Pregel: PageRank

class PageRankVertex : public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() = 0.15 / NumVertices() + ©.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

1} else {
VoteToHalt();

}
}
s

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

www.inf.ed.ac.uk

matics

VERSITY of EDINBURGH

[5 }Tﬁ{ > ! UNI
Aev): infor
€013"$

inf.

oL
S
,:zf°) 7> THE UNIVERSITY of EDINBURGH

¢y informatics
Y ARN: Hadoop version 2.0

« Hadoop limitations:
— Can only run MapReduce
— What if we want to run other distributed frameworks?
* YARN = Yet-Another-Resource-Negotiator
— Provides API to develop any generic distribution application
— Handles scheduling and resource request
— MapReduce (MR2) is one such application in YARN

www.inf.ed.ac.uk

S @) THE UNIVERSITY of EDINBURGH

A¢d)- informatics

Y ARN: architecture

MapReduce Status ———»

Job Submission ------ >
Node Status —-—— >
Resource Request --------.. -

www.inf.ed.ac.uk

3
\". THE UNIVERSITY of EDINBURGH

- informatics

Summary

« Making Hadoop more efficient

— Leveraging lessons learned from database systems, or extending
node-level functionality

» Tweaking the MapReduce programming model
— Higher-level programming
* Beyond MapReduce
— Catering for different data models and use cases

— Extending the runtime for generality

www.inf.ed.ac.uk

