
Elements of Programming Languages
Tutorial 5: Modules and Objects

Week 7 (October 30–November 3, 2017)

Exercises marked ? are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Subtyping and Contravariance

Consider the following Scala declarations:

abstract class Shape
class Rectangle(...) extends Shape
class Circle(...) extends Shape

Thus, Rectangle <: Shape and Circle <: Shape.

(a) Suppose we have a function f: (Shape => Int) => Int. What could
f potentially do with its argument? Does the type system allow us to
pass a function of type Rectangle => Int to f?

(b) Suppose we have a function g: (Circle => Int) => Int. What
could g potentially do with its argument? Does the type system allow
us to pass a function of type Shape => Int to g?

2. Modules and Interfaces in Scala

Consider the following Scala object definition.

object A {
type T = Int
val c: T = 1
val d: T = 2
def f(x: T, y:T): T = x + y

}
object B {
type T = String
val c: T = "abcd"
val d: T = "1234"
def f(x: T, y: T) = x + y

}

(a) Write expressions showing how to access each of the elements of A and
B.

(b) Suppose we execute the import statements

import A._
import B._

1



after finishing the declaration of A. What does unqualified identifier d
refer to after that? What if we import in the opposite order?

(c) (?) Construct a Scala trait ABlike defining bindings for all of the com-
ponents of A and B, and so that we can assert that both A and B extend
ABlike.

(d) (?) Define a function g taking an argument x: ABlike that applies f to
c and d. Apply it to both instances of ABlike above. What is its return
type?

(e) (?) Create an anonymous instance of ABlike with T = Boolean and
call the function g on it.

3. Type parameters
Some types, such as lists, are naturally thought of as parameterized. For ex-
ample, in Scala, the type List[A] takes a parameter A, the type of elements
of the lists.
Consider the following Scala code:

abstract class List[A]
case class Nil[A]() extends List[A]
case class Cons[A](head: A, tail: List[A]) extends List[A]

This defines a recursive data structure, consisting of lists. (Notice however
that Nil is a case class and so it carries a type annotation and empty param-
eter list.)

(a) Using the same approach as above, define a type Tree[A] for binary
trees whose leaves are labeled by values of type A. There should be two
constructors for such trees: Leaf(a) constructing a leaf with data a,
and Node(t1,t2) taking two trees and constructing a tree.

(b) Define a recursive function sum that adds up all of the integers in an
Tree[Int].

(c) Define a recursive function map: Tree[A] => (A => B) => Tree[B]

that applies a given function f: A => B to all of the A values on the
leaves of a Tree[A].

(d) (?) Define a function flatten: Tree[Tree[A]] => Tree[A].
(e) (?) Define a function flatMap : (Tree[A]) => (A => Tree[B]) => Tree[B]

4. (?) Ad hoc polymorphism
Traits can also accommodate overloading and reuse of the same name for
operations on different types. An operation such as size can be defined as
part of a trait as follows:

trait HasSize { def size(): Int }

(a) Modify the definition of List[A] above so that it extends HasSize,
and define an appropriate size method for it.

(b) Modify the definition of Tree[A] so that it extends HasSize and define
its size operation.

(c) Write a function sameSize that takes two values of type HasSize and
checks whether they have the same size.

(d) Call this function on a List[Int] and a Tree[String] to verify that the
correct implementations of size are called for different types.

2


