Elements of Programming Languages

Lecture 6: Data structures

James Cheney

University of Edinburgh

October 9, 2017

<ロ > ← □

The story so far

- We've now covered the main ingredients of any programming language:
 - Abstract syntax
 - Semantics/interpretation
 - Types
 - Variables and binding
 - Functions and recursion
- but the language is still very limited: there are no "data structures" (records, lists, variants), pointers, side-effects etc.
- Let alone even more advanced features such as classes, interfaces, or generics
- Over the next few lectures we will show how to add them, consolidating understanding of the foundations along the way.

 Image: Second content of the cont

Pairs and Records

Variants and Case Analysis

Pairs and Records

Pairs

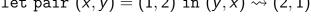
Pairs in various languages

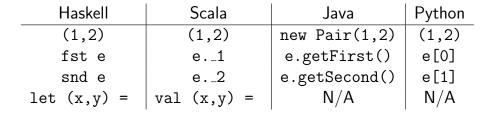
- The simplest way to combine data structures: pairing
 - (1,2) (true, false) $(1,(true, \lambda x:int.x + 2))$
- If we have a pair, we can extract one of the components:

$$fst(1,2) \leadsto 1$$
 $snd(true, false) \leadsto false$ $snd(1,(true, \lambda x:int.x + 2)) \leadsto (true, \lambda x:int.x + 2)$

• Finally, we can often *pattern match* against a pair, to extract both components at once:

let pair
$$(x, y) = (1, 2)$$
 in $(y, x) \leadsto (2, 1)$





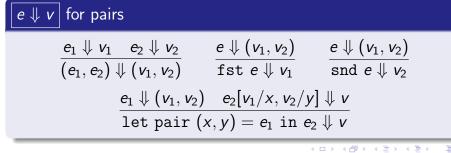
- Functional languages typically have explicit syntax (and types) for pairs
- Java and C-like languages have "record", "struct" or "class" structures that accommodate multiple, named fields.
 - A pair type can be defined but is not built-in and there is no support for pattern-matching

Syntax and Semantics of Pairs

• Syntax of pair expressions and values:

$$e ::= \cdots \mid (e_1, e_2) \mid \texttt{fst } e \mid \texttt{snd } e$$

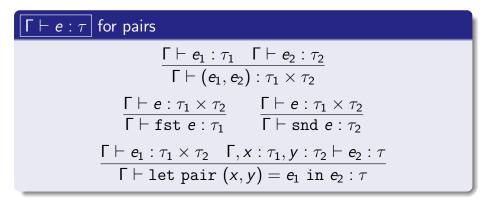
$$\mid \quad \texttt{let pair } (x, y) = e_1 \texttt{ in } e_2$$
 $v ::= \cdots \mid (v_1, v_2)$



Types for Pairs

• Types for pair expressions:

$$\tau ::= \cdots \mid \tau_1 \times \tau_2$$



Variants and Case Analysis

Pairs and Records

Variants and Case Analysis

Pairs and Records

let vs. fst and snd

• The fst and snd operations are definable in terms of let pair:

fst
$$e \iff \text{let pair } (x,y) = e \text{ in } x$$

snd $e \iff \text{let pair } (x,y) = e \text{ in } y$

 Actually, the let pair construct is definable in terms of let, fst, snd too:

let pair
$$(x,y) = e_1$$
 in e_2
 \iff let $p = e_1$ in e_2 [fst p/x , snd p/y]

 We typically just use the (simpler) fst and snd constructs and treat let pair as syntactic sugar.

More generally: tuples and records

 Nothing stops us from adding triples, quadruples, . . . , n-tuples.

$$(1,2,3)$$
 (true, 2, 3, $\lambda x.(x,x)$)

 As mentioned earlier, many languages prefer named record syntax:

$$(a:1,b:2,c:3)$$
 $(b:true, n_1:2, n_2:3, f:\lambda x.(x,x))$

- (cf. class fields in Java, structs in C, etc.)
- These are undeniably useful, but are definable using pairs.
- We'll revisit named record-style constructs when we consider classes and modules.

Special case: the "unit" type

• Nothing stops us from adding a type of *0-tuples*: a data structure with no data. This is often called the *unit type*, or unit.

$$e ::= \cdots \mid ()$$
 $v ::= \cdots \mid ()$
 $\tau ::= \cdots \mid \text{unit}$
 $\hline{() \Downarrow ()} \qquad \overline{\Gamma \vdash () : \text{unit}}$

- this may seem a little pointless: why bother to define a type with no (interesting) data and no operations?
- This is analogous to void in C/Java; in Haskell and Scala it is called ().

Motivation for variant types

- Pairs allow us to combine two data structures (a τ_1 and a τ_2).
- What if we want a data structure that allows us to choose between different options?
- We've already seen one example: booleans.
 - A boolean can be one of two values.
 - Given a boolean, we can look at its value and choose among two options, using if then else.
- Can we generalize this idea?

Pairs and Records

Variants and Case Analysis

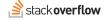
◆□ > ◆□ > ◆ = > ◆ = り へ ○

Pairs and Records

Another example: null values

- Sometimes we want to produce either a regular value or a special "null" value.
- Some languages, including SQL and Java, allow many types to have null values by default.
 - This leads to the need for defensive programming to avoid the dreaded NullPointerException in Java, or strange query behavior in SQL
 - Sir Tony Hoare (inventor of Quicksort) introduced null references in Algol in 1965 "simply because it was so easy to implement"!
 - he now calls them "the billion dollar mistake": http://www.infoq.com/presentations/← $Null-References-The-Billion \leftarrow$ -Dollar-Mistake-Tony-Hoare

Another problem with Null



Variants and Case Analysis

How do I correctly pass the string "Null" (an employee's proper surname) to a SOAP web service from ActionScript 3?

The parameter type is string

asked 4 years ago

What would be better?

• Consider an *option type*:

$$e ::= \cdots \mid \mathtt{none} \mid \mathtt{some}(e)$$
 $au ::= \cdots \mid \mathtt{option}[au]$

$$\frac{\Gamma \vdash e : au}{\Gamma \vdash \mathtt{none} : \mathtt{option}[au]} \frac{\Gamma \vdash e : au}{\Gamma \vdash \mathtt{some}(e) : \mathtt{option}[au]}$$

- Then we can use none to indicate absence of a value, and some(e) to give the present value.
- Morover, the type of an expression tells us whether null values are possible.

Error codes

- The option type is useful but still a little limited: we either get a τ value, or nothing
- If none means failure, we might want to get some more information about why the failure occurred.
- We would like to be able to return an error code
 - In older languages, notably C, special values are often used for errors
 - Example: read reads from a file, and either returns number of bytes read, or -1 representing an error
 - The actual error code is passed via a global variable
 - It's easy to forget to check this result, and the function's return value can't be used to return data.
 - Other languages use exceptions, which we'll cover much later

Pairs and Records

Variants and Case Analysis

Pairs and Records

The OK-or-error type

- Suppose we want to return either a normal value τ_{ok} or an error value τ_{err} .
- Let's write ok $0rErr[\tau_{ok}, \tau_{err}]$ for this type.

$$e ::= \cdots \mid ok(e) \mid err(e)$$

 $\tau ::= \cdots \mid okOrErr[\tau_1, \tau_2]$

- Basic idea:
 - if e has type τ_{ok} , then ok(e) has type $okOrErr[\tau_{ok}, \tau_{err}]$
 - if e has type τ_{err} , then err(e) has type ok $OrErr[\tau_{ok}, \tau_{err}]$

How do we use okOrErr[τ_{ok}, τ_{err}]?

- When we talked about option[τ], we didn't really say how to *use* the results.
- If we have a ok $0rErr[\tau_{ok}, \tau_{err}]$ value v, then we want to be able to branch on its value:
 - If v is $ok(v_{ok})$, then we probably want to get at v_{ok} and use it to proceed with the computation
 - If v is $err(v_{err})$, then we probably want to get at v_{err} to report the error and stop the computation.
- In other words, we want to perform case analysis on the value, and extract the wrapped value for further processing

Case analysis

• We consider a case analysis construct as follows:

case
$$e$$
 of $\{ok(x) \Rightarrow e_{ok} ; err(y) \Rightarrow e_{err}\}$

- This is a generalized conditional: "If e evaluates to $ok(v_{ok})$, then evaluate e_{ok} with v_{ok} replacing x, else it evaluates to $err(v_{err})$ so evaluate e_{err} with v_{err} replacing y."
- Here, x is bound in e_{ok} and y is bound in e_{err}
- This construct should be familiar by now from Scala:

Variant types, more generally

- Notice that the ok and err cases are completely symmetric
- Generalizing this type might also be useful for other situations than error handling...
- Therefore, let's rename and generalize the notation:

$$e ::= \cdots \mid \text{left}(e) \mid \text{right}(e) \ \mid \quad \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 \; ; \; \text{right}(y) \Rightarrow e_2 \} \ v ::= \cdots \mid \text{left}(v) \mid \text{right}(v) \ \tau ::= \cdots \mid \tau_1 + \tau_2$$

• We will call type $\tau_1 + \tau_2$ a variant type (sometimes also called *sum* or *disjoint union*)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りゅ○

Variants and Case Analysis

Pairs and Records

Variants and Case Analysis

Pairs and Records

Types for variants

• We extend the typing rules as follows:

$\Gamma \vdash \tau$ for variant types

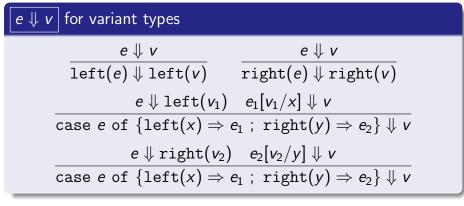
$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{left}(e) : \tau_1 + \tau_2} \qquad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{right}(e) : \tau_1 + \tau_2}$$

$$\frac{\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma, x : \tau_1 \vdash e_1 : \tau \quad \Gamma, y : \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \mathsf{case} \ e \ \mathsf{of} \ \{\mathsf{left}(x) \Rightarrow e_1 \ ; \ \mathsf{right}(y) \Rightarrow e_2\} : \tau}$$

- Idea: left and right "wrap" τ_1 or τ_2 as $\tau_1 + \tau_2$
- Idea: Case is like conditional, only we can use the wrapped value extracted from left(v) or right(v).

Semantics of variants

• We extend the evaluation rules as follows:



- Creating a $\tau_1 + \tau_2$ value is straightforward.
- Case analysis branches on the $\tau_1 + \tau_2$ value

Defining Booleans and option types

• The Boolean type bool can be defined as unit + unit

$$true \iff left()$$
 false $\iff right()$

 Conditional is then defined as case analysis, ignoring the variables

$$\text{if e then e_1 else e_2} \\ \iff \mathsf{case} \ e \ \text{of} \ \{\mathsf{left}(x) \Rightarrow e_1 \ ; \ \mathsf{right}(y) \Rightarrow e_2\}$$

• Likewise, the option type is definable as $\tau + \text{unit}$:

$$some(e) \iff left(e)$$
 none $\iff right()$

Datatypes: named variants and case classes

- Programming directly with binary variants is awkward
- As for pairs, the $\tau_1 + \tau_2$ type can be generalized to *n*-ary choices or *named variants*
- As we saw in Lecture 1 with abstract syntax trees, variants can be represented in different ways
 - Haskell supports "datatypes" which give constructor names to the cases
 - In Java, can use classes and inheritance to simulate this, verbosely (Python similar)
 - Scala does not directly support named variant types, but provides "case classes" and pattern matching
 - We'll revisit case classes and variants later in discussion of object-oriented programming.

◆ロ → ◆園 → ◆ 草 → ◆ 草 → りへぐ

Variants and Case Analysis

Pairs and Records

 \checkmark \square \flat \checkmark \square \flat \checkmark \square \flat \checkmark \square \flat \bigcirc \square \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Variants and Case Analysis

The empty type

Pairs and Records

• We can also consider the 0-ary variant type

$$\tau$$
 ::= \cdots | empty

with no associated expressions or values

- Scala provides Nothing as a built-in type; most languages do not
 - [Perhaps confusingly, this is not the same thing at all as the void or unit type!]
- We will talk about Nothing again when we cover subtyping
 - (Insert *Seinfeld* joke here, if anyone is old enough to remember that.)

Summary

- Today we've covered two primitive types for structured data:
 - Pairs, which combine two or more data structures
 - Variants, which represent alternative choices among data structures
 - Special cases (unit, empty) and generalizations (records, datatypes)
- This is a pattern we'll see over and over:
 - Define a type and expressions for creating and using its elements
 - Define typing rules and evaluation rules
- Next time:
 - Named records and variants
 - Subtyping