Named functions Anonymous functions Recursion

Elements of Programming Languages

Lecture 5: Functions and recursion

James Cheney
University of Edinburgh

October 5, 2017

Named functions Anonymous functions Recursion

Named functions

@ A simple way to add support for functions is as follows:
en=---|f(e)|let fun f(x:7) =€ in &

@ Meaning: Define a function called f that takes an
argument x and whose result is the expression e;.

Make f available for use in e5.
(That is, the scope of x is e;, and the scope of f is e;.)
This is pretty limited:

e for now, we consider one-argument functions only.

@ NO recursion

e functions are not first-class “values” (e.g. can't pass a
function as an argument to another)

Named functions Anonymous functions

Overview

So far, we've covered

e arithmetic
e booleans, conditionals (if then else)
e variables and simple binding (1let)

@ L, allows us to compute values of expressions

@ and use variables to store intermediate values

@ but not to define computations on unknown values.
o

That is, there is no feature analogous to Haskell's
functions, Scala's def, or methods in Java.

Today, we consider functions and recursion

Named functions Anonymous functions

Examples

@ We can define a squaring function:
let fun square(x : int) = x X x in ---

@ or (assuming inequality tests) absolute value:

Recursion

Recursion

let fun abs(x : int) = if x < 0 then —x else x in - --

Named functions Anonymous functions Recursion

Types for named functions

@ We introduce a type constructor T, — 75, meaning “the
type of functions taking arguments in 7; and returning 7"

@ We can typecheck named functions as follows:
W xmbe:mn fm—mnhe: T
NFlet fun f(x:m)=e ine: 7

F(f):7'1—>72 FI—e:Tl
r|_f(e)37'2

@ For convenience, we just use a single environment [for
both variables and function names.

Named functions Anonymous functions Recursion

Semantics of named functions

@ We can define rules for evaluating named functions as
follows.

e First, let 9 be an environment mapping function names f
to their “definitions”, which we'll write as (x = e).

@ When we encounter a function definition, add it to .
Sf—{(x=e)],ea v
d,let fun f(x:7) =€ ine | v

@ When we encounter an application, look up the definition
and evaluate the body with the argument value
substituted for the argument:

o0l vo o(f)=(x=¢e)
5, f(eo) ~U 14

9, e[vo/x] | v

Named functions Anonymous functions Recursion

Example

Typechecking of abs(—42)

[(x) = int [(x) = int
[Fx:int T FHO:int [F x:int r(x):int
Fx<0:bool [—x:int [F x:int
[+ if x < 0 then —x else x : int

: abs:int — int - —42 : int
[F eaps : int abs:int — int - abs(—42) : int
- let fun abs(x : int) = e,ps in abs(—42) : int

where e,,s = if x < 0 then —x else x and [= x:int.

Named functions Anonymous functions Recursion

Examples

Evaluation of abs(—42)

9, —42 < 0 | true 9, —(—42) | 42
J,if —42 < 0 then — (—42) else —42 |} 42

5,—42 | 42 6(abs) = (x = exs) 0, €aps|—42/x] | 42
J, abs(—42) || 42
let fun abs(x : int) = e, in abs(—42) |} 42

where e,ps = if x < 0 then —x else x and
d = [abs — (x = €aps)]

Named functions Anonymous functions Recursion Named functions Anonymous functions Recursion

Static vs. dynamic scope Static vs. dynamic scope

@ Function bodies can contain free variables. Consider:

let x=11in
let fun f(y :int) = x+y in
let x =10 in f(3)

@ The terms static and dynamic scope are sometimes used.

@ In static scope, the scope and binding occurrences of all
variables can be determined from the program text,

without actually running the program. @ Here, x is bound to 1 at the time f is defined, but

re-bound to 10 when by the time f is called.

@ There are two reasonable-seeming result values,
depending on which x is in scope:

e In dynamic scope, this is not necessarily the case: the
scope of a variable can depend on the context in which it
is evaluated at run time.

e Static scope uses the binding x = 1 present when f is
defined, so we get 1 + 3 = 4.
e Dynamic scope uses the binding x = 10 present when f
is used, so we get 10 + 3 = 13.
Named functions Anonymous functions Recursion Named functions

Anonymous functions Recursion

Dynamic scope breaks type soundness Anonymous, first-class functions

© Even worse, what if we do this: @ In many languages (including Java as of version 8), we

can also write an expression for a function without a
name:

let x =1 1in
let fun f(y :int) = x+y in

let x = true in f(3) AX:T. e

@ When we typecheck f, x is an integer, but it is re-bound °

to a boolean by the time f is called.

@ The program as a whole typechecks, but we get a
run-time error: dynamic scope makes the type system
unsound!

@ Early versions of LISP used dynamic scope, and it is
arguably useful in an untyped language.

@ Dynamic scope is now generally acknowledged as a
mistake — but one that naive language designers still
make.

Here, \ (Greek letter lambda) introduces an anonymous
function expression in which x is bound in e.

o (The A-notation dates to Church'’s higher-order logic

(1940); there are several competing stories about why he
chose \.)

In Scala one writes: (x: Type) => e
In Java 8: x —> e (no type needed)
In Haskell: \x -> e or \x::Type -> e

The lambda-calculus is a model of anonymous functions

Named functions Anonymous functions Recursion

Types for the A-calculus
@ We define L, to be L extended with typed
A-abstraction and application as follows:

e = --lee|IxT. €

T o= - |lm oD

e 71 — 7 is (again) the type of functions from 1y to 7.

@ We can extend the typing rules as follows:

for Liar

Fl—e1:71—>7'2 rl—e2:7'1
Fl—e1e2:7'2

N xmFe:n
[FXXxT. e — 1

Named functions Anonymous functions Recursion

Examples

@ In Li,m, we can define a higher-order function that calls
its argument twice:

let fun twice(f : 7 — 7) = Ax:T. f(f(x)) in ---

@ and we can define the composition of two functions:

let compose = A1y — 3. A\g:11 — T2. Axi1y. f(g(x)) in - - -

@ Notice we are using repeated A-abstractions to handle
multiple arguments

Named functions Anonymous functions Recursion

Evaluation for the \-calculus

@ Values are extended to include M\-abstractions A\x. e:

vi=---| Ax. e

(Note: We elide the type annotations when not needed.)
@ and the evaluation rules are extended as follows:

e[va/x] I v

eli})\x.e GQll Vo
er &l v

Ax. el Ax. e

@ Note: Combined with let, this subsumes named
functions! We can just define 1et fun as “syntactic
sugar”

let fun f(x:T) =€ in e <= let f = AxiT. ¢ in &

Named functions Anonymous functions Recursion

Recursive functions

@ However, L, still cannot express general recursion, e.g.
the factorial function:

let fun fact(nm:int) =
if n==0 then 1 else n x fact(n—1) in ---

is not allowed because fact is not in scope inside the
function body.

@ We can't write it directly as a A-expression Ax:7. e either
because we don't have a “name” for the function we're
trying to define inside e.

e (Technically, we could get around this problem in an
untyped version of the lambda calculus...)

Named functions Anonymous functions Recursion

Named recursive functions

@ In many languages, named function definitions are
recursive by default. (C, Python, Java, Haskell, Scala)

@ Others explicitly distinguish between nonrecursive and
recursive (named) function definitions. (Scheme, OCaml,
F#)
let £(x) = e // nonrecursive:

// only x is in scope in e

let rec f(x) = e // recursive:

// both f and x in scope in e

@ Note: In the untyped A-calculus, let rec is definable
using a special A\-term called the Y combinator

Named functions Anonymous functions Recursion

Anonymous recursive functions: typing

@ The types of Lgec are the same. We just add one rule:

for Lpec

M f:mm—o>mx:nnke:n

Frecf(xim):m. e:m = m

@ This says: to typecheck a recursive function,
e bind f to the type 71 — 7> (so that we can call it as a
function in e),
e bind x to the type 71 (so that we can use it as an
argument in e),
e typecheck e.

@ Since we use the same function type, the existing function
application rule is unchanged.

Named functions Anonymous functions Recursion

Anonymous recursive functions

@ Inspired by L., we introduce a notation for anonymous
recursive functions:

en=---|recf(x:m):m. e

@ ldea: f is a local name for the function being defined, and
is in scope in e, along with the argument x.

@ We define Lge to be L, extended with rec.
@ We can then define let rec as syntactic sugar:

let rec f(x:i11) :» = € in &
<= let f =rec f(xi11) : 7. € in &

@ Note: The outer f is in scope in e, while the inner one is
in scope in e;. The two f bindings are unrelated.

Named functions Anonymous functions Recursion

Anonymous recursive functions: semantics

@ Like a A\-term, a recursive function is a value:
vi=---|rec f(x). e

@ We can evaluate recursive functions as follows:

for Lrec

rec f(x). e | rec f(x). e

e vo e[rec f(x). e/f,va/x] | v
€1 & U "4

e; | rec f(x). e

v

@ To apply a recursive function, we substitute the argument
for x and the whole rec expression for f.

Named functions Anonymous functions Recursion

Examples

@ We can now write, typecheck and run fact

o (you will implement an evaluator for Lrec in Assignment
2 that can do this)

@ In fact, Lgrec is Turing-complete (though it is still so
limited that it is not very useful as a general-purpose
language)

@ (Turing complete means: able to simulate any Turing
machine, that is, any computable function / any other
programming language. ITCS covers Turing completeness
and computability in depth.)

Named functions Anonymous functions Recursion

Summary

@ Today we have covered:

e Named functions

e Static vs. dynamic scope
e Anonymous functions

e Recursive functions

@ along with our first “composite” type, the function type
1 — T2.
@ Next time

o Data structures: Pairs (combination) and variants
(choice)

Named functions Anonymous functions Recursion

Mutual recursion

@ What if we want to define mutually recursive functions?

@ A simple example:

def even(n: Int) = if n == 0 then true else odd(n-1)
def odd(n: Int) = if n == 0 then false else even(n-1)

Perhaps surprisingly, we can't easily do this!

@ One solution: generalize let rec:

let rec fi(xy:71) : 7 = € and --- and f,(x,:7,) : T, = e,
in e
where fi, ..., f, are all in scope in bodies ey, ..., e,.

@ This gets messy fast; we'll revisit this issue later.

