While-programs Structured control and procedures

Elements of Programming Languages

Lecture 12: Imperative programming

Unstructured control While-programs

James Cheney
University of Edinburgh

November 6, 2017

While-programs Structured control and procedures

Mutable vs. immutable

@ Advantages of immutability:
o Referential transparency (substitution of equals for
equals); programs easier to reason about and optimize
e Types tell us more about what a program can/cannot do
@ Advantages of mutability:
e Some common data structures easier to implement
o Easier to translate to machine code (in a
performance-preserving way)
e Seems closely tied to popular OOP model of “objects
with hidden state and public methods”

@ Today we'll consider programming with assignable
variables and loops (Lwhile) and then discuss procedures
and other forms of control flow

Unstructured control While-programs

Structured control and procedures Unstructured control

The story so far

@ So far we've mostly considered pure computations.

@ Once a variable is bound to a value, the value never
changes.

o that is, variables are immutable.

@ This is not how most programming languages treat
variables!

e In most languages, we can assign new values to
variables: that is, variables are mutable by default

@ Just a few languages are completely “pure” (Haskell).

@ Others strike a balance:

e e.g. Scala distinguishes immutable (val) variables and
mutable (var) variables
e similarly const in Java, C

Structured control and procedures Unstructured control

While-programs

@ Let's start with a simple example: Lwhje, with statements

Stmt>s = skip|s;s|x:=e

| if e then s else s, |while edo s

@ skip does nothing
@ s;1; s does s;, then s,
@ x := e evaluates e and assigns the value to x

@ if e then s; else s, evaluates e, and evaluates s; or s,
based on the result.

@ while e do s tests e. If true, evaluate s and loop;
otherwise stop.

@ We typically use {} to parenthesize statements.

While-programs Structured control and procedures

A simple example: factorial again

@ In Scala, mutable variables can be defined with var

Unstructured control While-programs

var n e

var x 1

while(n > 0) {
X =n *x X

n = n-1

}

@ In Lwhie, all variables are mutable
x :=1;while (n >0) do {x:=nxx;n:=n—1}

While-programs Structured control and procedures

An interpreter for Lypje

Unstructured control While-programs

def exec(env: Env[Value], s: Stmt): Env[Value] =

s match {

case WhileDo(e,s) => eval(env, e) match {
case BoolV(true) =>
val envl = exec(env,s)
exec(envl, WhileDo(e,s))
case BoolV(false) => env
+
case Assign(x,e) =>
val v = eval(env,e)
env + (x —> v)

Structured control and procedures Unstructured control

An interpreter for Lynie

We will define a pure interpreter:

def exec(env: Env[Valuel], s: Stmt): Env[Value] =
s match {
case Skip => env
case Seq(sl,s2) =>
val envl = exec(env, s1)

exec(envl,s2)
case IfThenElseS(e,s1,s2) => eval(env,e) match {

case BoolV(true) => exec(env,sl)
case BoolV(false) => exec(env,s?2)

}

Structured control and procedures Unstructured control

While-programs: evaluation

o,s1 0" o, 0"
o,skip | o o,s1;5 | o
o,el true 0,5 {0’ o,el false 0,5 | o
o,if e then s; else s, | 0/ 0,if e then s else 5, || 0’
o,e |l true o,s| o’ o',while edos | o’
o,while edo s | o”

o,e |} false o,el v

o,while edo sl o o,x:=el a[x :=v]

@ Here, we use evaluation in context o, e || v (cf.
Assignment 2)

While-programs Structured control and procedures Unstructured control

Examples

o x:=y+1,z:=2xx

01>Y+1U2
o, x:=y+1J o0
o, x=y+1,z:=2xx | o3

00,2% x4
00,Z2:=2%x1 03

@ where
o1 = [y = 1]
oy = [x:=2,y:=1]
o3 = [x:=2,y:=1z:=4]

While-programs Structured control and procedures Unstructured control

Procedures

@ Lwhie is not a realistic language.
@ Among other things, it lacks procedures
e Example (C/Java):
int fact(int n) {
int x = 1;
while(n > 0) {
X = X*n;
n =n-1;
+
return X;
}
@ Procedures can be added to Lwhie (much like functions in
I—-Rec)
@ Rather than do this, we'll show how to combine Lyie
with Lgec later.

While-programs Structured control and procedures Unstructured control

Other control flow constructs

@ We've taken “if" (with both “then” and “else” branches)
and “while” to be primitive

@ We can define some other operations in terms of these:

if e thens <= 1if e then s else skip
do s whilee <= s;whileedos
for (i€n...m)dos <= i:=n;
while i < mdo {
s;i=1+1

@ as seen in C, Java, etc.

While-programs Structured control and procedures Unstructured control

Structured vs. unstructured programming
[Non-examinable]

All of the languages we've seen so far are structured
e meaning, control flow is managed using if, while,
procedures, functions, etc.

However, low-level machine code doesn’t have any of
these.

A machine-code program is just a sequence of
instructions in memory

The only control flow is branching:

e “unconditionally go to instruction at address n"
e “if some condition holds, go to instruction at address n”

Similarly, “goto” statements were the main form of
control flow in many early languages

While-programs Structured control and procedures

"GO TO" Considered Harmful [Non-examinable]

While-programs Structured control and procedures

Unstructured control

@ In a famous letter (CACM 1968), Dijkstra listed many
disadvantages of “goto” and related constructs

o |t allows you to write “spaghetti code”, where control
flow is very difficult to decipher

e For efficiency/historical reasons, many languages include
such “unstructured” features:
e “goto” — jump to a specific program location
e “switch” statements
e “break” and “continue” in loops
@ It's important to know about these features, their pitfalls
and their safe uses.

Unstructured control

goto in C: pitfalls [Non-examinable]

@ The scope of the goto L statement and the target L
might be different

e for that matter, they might not even be in the same
procedure!
@ For example, what does this do:
goto L;
if(1) {
int k = fact(3);
L: printf("%d",k);
}

@ Answer: k will be some random value!

While-programs Structured control and procedures

While-programs Structured control and procedures

Unstructured control

goto in C [Non-examinable]

@ The C (and C++) language includes goto
@ In C, goto L jumps to the statement labeled L
@ A typical (relatively sane) use of goto

. do some stuff

if (error) goto error;

. do some more stuff

if (error2) goto error;

. do some more stuff...
error: .. handle the error...

@ We'll see other, better-structured ways to do this using
exceptions.

Unstructured control

goto: caveats [Non-examinable]

@ goto can be used safely in C, but is best avoided unless
you have a really good reason

@ e.g. very high performance/systems code
@ Safe use: within same procedure/scope

@ Or: to jump “out” of a nested loop

While-programs Structured control and procedures

goto fail [Non-examinable]

e What's wrong with this picture?
if (error test 1)
goto fail;
if (error test 2)
goto fail;
goto fail;
if (error test 3)
goto fail;

fail: ... handle error ...

@ (In C, braces on if are optional; if they're left out, only
the first goto fail statement is conditionall)

@ This led to an Apple SSL security vulnerability in 2014
(see https://gotofail.com/)

While-programs Structured control and procedures

switch statements: gotchas [Non-examinable]

@ See the break; statement?
@ It's an important part of the control flow!

e it says “now jump out the end of the switch statement”

month = 1;

switch (month) {
case 1: print("January");
case 2: print("February");

default: print("unknown month");
} // prints all months!

@ Can you think of a good reason why you would want to
leave out the break?

Unstructured control

Unstructured control

While-programs Structured control and procedures

switch statements [Non-examinable]

@ We've seen case or match constructs in Scala
@ The switch statement in C, Java, etc. is similar:

switch (month) {
case 1: print("January"); break;
case 2: print("February"); break;

default: print("unknown month"); break;

@ However, typically the argument must be a base type like
int
While-programs Structured control and procedures

Break and continue [Non-examinable]

@ The break and continue statements are also allowed in
loops in C/Java family languages.

for(i = 0; i < 10; i++) {

if (1 % 2 == 0) continue;
if (i == 7) break;
print(i);

}

@ “Continue” says Skip the rest of this iteration of the loop.
@ "“Break” says Jump to the next statement after this loop
@ This will print 135 and then exit the loop.

Unstructured control

Unstructured control

While-programs Structured control and procedures Unstructured control While-programs Structured control and procedures Unstructured control

Labeled break and continue [Non-examinable] Summary
@ In Java, break and continue can use labels. @ Many real-world programming languages have:
OQUTER: for(i = 0; i < 10; i++) { @ mutable state
INNER: for(j = 0; j < 10; j++) { @ structured control flow (if/then, while, exceptions)
if (j > i) continue INNER; © procedures
if (i == 4) break OUTER; @ We've showed how to model and interpret Lwhile, a simple
print(j); imperative language
X @ and discussed a variety of (unstructured) control flow
¥ structures, such as “goto”, “switch” and
@ This will print 001012 and then exit the loop. “break/continue”.
o (Labeled) break and continue accommodate some of the o Next time:

safe uses of goto without as many sharp edges o Small-step semantics and type soundness

