
Advanced constructs Functions as objects Iterators and comprehensions

Elements of Programming Languages
Lecture 11: Object-oriented functional programming

James Cheney

University of Edinburgh

October 30, 2017

Advanced constructs Functions as objects Iterators and comprehensions

Overview

We’ve now covered:

basics of functional programming (with semantics)
basics of modular and OO programming (via Scala
examples)

Today, finish discussion of “programming in the large”:

some more advanced OO constructs
and how they co-exist with/support functional
programming in Scala
list comprehensions as an extended example

Advanced constructs Functions as objects Iterators and comprehensions

Advanced constructs

So far, we’ve covered the “basic” OOP model (circa Java
1.0), plus some Scala-isms

Modern languages extend this model in several ways

We can define a structure (class/object/trait) inside
another:

As a member of the enclosing class (tied to a specific
instance)
or as a static member (shared across all instances)
As a local definition inside a method
As an anonymous local definition

Java (since 1.5) and Scala support “generics”
(parameterized types as well as polymorphic functions)

Some languages also support mixins (e.g. Scala traits)

Advanced constructs Functions as objects Iterators and comprehensions

Motivating inner class example

A nested/inner class has access to the private/protected
members of the containing class

So, we can use nested classes to expose an interface
associated with a specific object:

class List<A> {

private A head;

private List<A> tail;

class ListIterator<A> implements Iterator<A> {

... (can access head, tail)

}

}



Advanced constructs Functions as objects Iterators and comprehensions

Classes/objects as members

In Scala, classes and objects (and traits) can be nested
arbitrarily

class A { object B { val x = 1 } }

scala> val a = new A

object C {class D { val x = 1 } }

scala> val d = new C.D

class E { class F { val x = 1 } }

scala> val e = new E

scala> val f = new e.F

Advanced constructs Functions as objects Iterators and comprehensions

Local classes

A local class (Java terminology) is a class that is defined
inside a method

def foo(): Int = {

val z = 1

class X { val x = z + 1}

return (new X).x

}

scala> foo()

res0: Int = 2

Advanced constructs Functions as objects Iterators and comprehensions

Anonymous classes/objects

Given an interface or parent class, we can define an
anonymous instance without giving it an explicit name

In Java, called an anonymous local class

In Scala, looks like this:

abstract class Foo { def foo() : Int }

val foo1 = new Foo { def foo() = 42 }

We can also give a local name to the instance (useful
since this may be shadowed)

val foo2 = new Foo { self =>

val x = 42

def foo() = self.x

}

Advanced constructs Functions as objects Iterators and comprehensions

Parameterized types

As mentioned earlier, types can take parameters

For example, List[A] has a type parameter A

This is related to (but different from) polymorphism

A polymorphic function (like map) has a type that is
parameterized by a given type.
A parameterized type (like List[_]) is a type
constructor: for every type T, it constructs a type
List[T].



Advanced constructs Functions as objects Iterators and comprehensions

Defining parameterized types

In Scala, there are basically three ways to define
parameterized types:

In a type abbreviation (NB: multiple parameters)

type Pair[A,B] = (A,B)

in a (abstract) class definition

abstract class List[A]

case class Cons[A](head: A, tail: List[A])

extends List[A]

in a trait definition

trait Stack[A] { ...

}

Advanced constructs Functions as objects Iterators and comprehensions

Using parameterized types inside a structure

The type parameters of a structure are implicitly available
to all components of the structure.

Thus, in the List[A] class, map, flatMap, filter are
declared as follows:

abstract class List[A] {

...

def map[B](f: A => B): List[B]

def filter(p: A => Boolean): List[A]

def flatMap[B](f: A => List[B]): List[B]

// applies f to each element of this,

// and concatenates results

}

Advanced constructs Functions as objects Iterators and comprehensions

Parameterized types and subtyping

By default, a type parameter is invariant

That is, neither covariant nor contravariant

To indicate that a type parameter is covariant, we can
prefix it with +

abstract class List[+A] // see tutorial 6

To indicate that a type parameter is contravariant, we
can prefix it with -

trait Fun[-A,+B] // see next few slides...

Scala checks to make sure these variance annotations
make sense!

Advanced constructs Functions as objects Iterators and comprehensions

Type bounds

Type parameters can be given subtyping bounds
For example, in an interface (that is, trait or abstract
class) I:

type T <: C

says that abstract type member T is constrained to be a
subtype of C.
This is checked for any module implementing I

Similarly, type parameters to function definitions, or
class/trait definitions, can be bounded:

fun f[A <: C](...) = ...

class D[A <: C] { ... }

Upper bounds A >: U are also possible...



Advanced constructs Functions as objects Iterators and comprehensions

Traits as mixins

So far we have used Scala’s trait keyword for
“interfaces” (which can include type members, unlike
Java)

However, traits are considerably more powerful:

Traits can contain fields
Traits can provide (“default”) method implementations

This means traits provide a powerful form of modularity:
mixin composition

Idea: a trait can specify extra fields and methods
providing a “behavior”
Multiple traits can be “mixed in”; most recent definition
“wins” (avoiding some problems of multipel inheritance)

Java 8’s support for “default” methods in interfaces also
allows a form of mixin composition.

Advanced constructs Functions as objects Iterators and comprehensions

Tastes great, and look at that shine!

Shimmer is a floor wax!

trait FloorWax { def clean(f: Floor) { ... } }

No, it’s a delicious dessert topping!

trait TastyDessertTopping {

val calories = 1000

def addTo(d: Dessert) { d.addCal(calories) }

}

In Scala, it can be both:

object Shimmer extends FloorWax

with TastyDessertTopping { ... }

Advanced constructs Functions as objects Iterators and comprehensions

Pay no attention to the man behind the curtain...

Scala bills itself as a “multi-paradigm” or
“object-oriented, functional” language

How do the “paradigms” actually fit together?

Some features, such as case classes, are more obviously
“object-oriented” versions of “functional” constructs

Until now, we have pretended pairs, λ-abstractions, etc.
are primitives in Scala

They are not primitives; and they need to be
implemented in a way compatible with Java/JVM
assumptions

But how do they really work?

Advanced constructs Functions as objects Iterators and comprehensions

Function types as interfaces

Suppose we define the following interface:

trait Fun[-A,+B] { // A contravariant, B covariant

def apply(x: A): B

}

This says: an object implementing Fun[A,B] has an
apply method

Note: This is basically the Function trait in the Scala
standard library!

Scala translates f(x) to f.apply(x)

Also, {x: T => e} is essentially syntactic sugar for
new Function[Int,Int] {def apply(x:T) = e }!



Advanced constructs Functions as objects Iterators and comprehensions

Iterators and collections in Java

Java provides standard interfaces for iterators and
collections

interface Iterator<E> {

boolean hasNext()

E next()

...

}

interface Collection<E> {

Iterator<E> iterator()

...

}

These allow programming over different types of
collections in a more abstract way than “indexed for loop”

Advanced constructs Functions as objects Iterators and comprehensions

Iterators and foreach loops

Since Java 1.5, one can write the following:

for(Element x : coll) {

... do stuff with x ...

}

Provided coll implements the Collection<Element>

interface

This is essentially syntactic sugar for:

for(Iterator<Element> i = coll.iterator();

i.hasNext(); ) {

Element x = i.next();

... do stuff with x ...

}

Advanced constructs Functions as objects Iterators and comprehensions

foreach in Scala

Scala has a similar for construct (with slightly different
syntax)

for (x <- coll) { ... do something with x ... }

For example:

scala> for (x <- List(1,2,3)) { println(x) }

1

2

3

Advanced constructs Functions as objects Iterators and comprehensions

foreach in Scala

The construct for (x <- coll) { e } is syntactic
sugar for:

coll.foreach{x => ... do something with x ...}

if x: T and coll has method foreach: (A => ()) => ()

Scala expands for loops before checking that coll

actually provides foreach of appropriate type

If not, you get a somewhat mysterious error message...

scala> for (x <- 42) {println(x)}

<console>:11: error: value foreach is not a

member of Int



Advanced constructs Functions as objects Iterators and comprehensions

Comprehensions: Mapping

Scala (in common with Haskell, Python, C#, F# and
others) supports a rich “comprehension syntax”

Example:

scala> for(x <- List("a","b","c")) yield (x + "z")

res0: List[Int] = List(az,bz,cz)

This is shorthand for:

List("a","b","c").map{x => x + "z"}

where map[B](f: A => B): List[B] is a method of
List[A].

(In fact, this works for any object implementing such a
method.)

Advanced constructs Functions as objects Iterators and comprehensions

Comprehensions: Filtering

Comprehensions can also include filters

scala> for(x <- List("a","b","c");

if (x != "b")) yield (x + "z")

res0: List[Int] = List(az,cz)

This is shorthand for:

List("a","b","c").filter{x => x != "b"}

.map{x => x + "z"}

where filter(f: A => Boolean): List[A] is a method
of List[A].

Advanced constructs Functions as objects Iterators and comprehensions

Comprehensions: Multiple Generators

Comprehensions can also iterate over several lists

scala> for(x <- List("a","b","c");

y <- List("a","b","c");

if (x != y)) yield (x + y)

res0: List[Int] = List(ab,ac,ba,bc,ca,cb)

This is shorthand for:

List("a","b","c").flatMap{x =>

List("a","b","c").flatMap{y =>

if (x != y) List(x + y) else {Nil}}}

where flatMap(f: A => List[B]): List[B] is a method
of List[A].

Advanced constructs Functions as objects Iterators and comprehensions

Summary

In the last few lectures we’ve covered

Modules and interfaces
Objects and classes
How they interact with subtyping, type abstraction
and how they can be used to implement “functional”
features (particularly in Scala)

This concludes our tour of “programming in the large”

(though there is much more that could be said)

Next time:

imperative programming


