Concrete vs. abstract syntax Abstract syntax trees Structural Induction Concrete vs. abstract syntax Abstract syntax trees

Today

Structural Induction

Elements of Programming Languages

Lecture 1: Abstract syntax We will introduce some basic tools used throughout the

course:

James Cheney @ Concrete vs. abstract syntax
@ Abstract syntax trees

University of Edinburgh @ Induction over expressions

September 21, 2017

Concrete vs. abstract syntax Abstract syntax trees

Structural Induction Concrete vs. abstract syntax Abstract syntax trees Structural Induction
L Arith Concrete vs. abstract syntax
@ Concrete syntax: the actual syntax of a programming
@ We will start out with a very simple (almost trivial) language
“programming language” called La i, to illustrate these e Specify using context-free grammars (or generalizations)
concepts e Used in compiler/interpreter front-end, to decide how to
@ Namely, expressions with integers, + and x interpret strings as programs
o Examples: @ Abstract syntax: the “essential’ constructs of a
' rogramming language
1 + 2 -—-> 3 prog . &) gtag
L+ 9 %3 s 7 e Specify using so-called Backus Naur Form (BNF)
rammars
(1 +2) 3 --=>9 s

e Used in specifications and implementations to describe
the abstract syntax trees of a language.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

CFG vs. BNF

@ Context-free grammar giving concrete syntax for
expressions

E — EPLUSF|F
F — F TIMES F | NUM | LPAREN E RPAREN

@ Needs to handle precedence, parentheses, etc.

@ Tokenization (+ — PLUS, etc.), comments, whitespace
usually handled by a separate stage

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

BNF conventions

@ We will usually use BNF-style rules to define abstract
syntax trees
e and assume that concrete syntax issues such as
precedence, parentheses, whitespace, etc. are handled
elsewhere.

@ Convention: the subscripts on occurrences of e on the
RHS don't affect the meaning, just for readability

e Convention: we will freely use parentheses in abstract
syntax notation to disambiguate

°eg.

(1+2)x3 vs. 1+(2x3)

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

BNF grammars

@ BNF grammar giving abstract syntax for expressions

Exproe = e+elexe|neN

@ This says: there are three kinds of expressions

e Additions e; 4+ e», where two expressions are combined
with the 4 operator

e Multiplications e; x ey, where two expressions are
combined with the x operator

@ Numbers n € N

@ Much like CFG rules, we can "derive” more complex
expressions:

e—vet+e—3+e >3+ (e3xe)—---

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract
syntax trees, for example:

A A
+ 1 X B 3
A0 AR

These can be represented in a program as trees, or in other
ways (which we will cover in due course)

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Languages for examples

@ We will use several languages for examples throughout
the course:

Java: typed, object-oriented

Python: untyped, object-oriented with some functional
features

Haskell: typed, functional

Scala: typed, combines functional and OO features

e Sometimes others, to discuss specific features

@ You do not need to already know all these languages!

Concrete vs. abstract syntax Structural Induction

ASTs in Java

Abstract syntax trees

@ In Java ASTs can be defined using a class hierarchy:

class Plus extends Expr {
public Expr el;
public Expr e2;
Plus(Expr _el, Expr _e2) {

el = _el;
e2 = _e2;
}
}
class Times extends Expr {... // similar
}

Concrete vs. abstract syntax Structural Induction

ASTs in Java

Abstract syntax trees

@ In Java ASTs can be defined using a class hierarchy:

abstract class Expr {}
class Num extends Expr {
public int n;
Num(int _n) {

Concrete vs. abstract syntax Structural Induction

ASTs in Java

Abstract syntax trees

@ Traverse ASTs by adding a method to each class:

abstract class Expr {
abstract public int size();
}
class Num extends Expr { ...
public int size() { return 1;}
}
class Plus extends Expr { ...
public int size() {
return el.size() + e2.size() + 1;
}
}
class Times extends Expr {... // similar

+

Concrete vs. abstract syntax Abstract syntax trees Structural Induction Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Python ASTs in Haskell

@ Python is similar, but shorter (no types):
class Expr: @ In Haskell, ASTs are easily defined as datatypes:

pass # "abstract" data Expr = Num Integer
class Num(Expr) : | Plus Expr Expr
def __init__(self,n): | Times Expr Expr
self.n =n
def size(self): return 1
class Plus(Expr):
def __init__(self,el,e2):
self.el = el
self.e2 = e2
def size(self):
return self.el.size() + self.e2.size() + 1
class Times(Expr): # similar...

@ Likewise one can easily write functions to traverse them:
size :: Expr -> Integer
size (Num n) = 1
size (Plus el e2) =
(size el) + (size e2) + 1
size (Times el e2) =
(size el) + (size e2) + 1

Concrete vs. abstract syntax Abstract syntax trees Structural Induction Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Scala Creating ASTs

@ In Scala, can define ASTs conveniently using case classes:
abstract class Expr

case class Num(n: Integer) extends Expr o Java:
case class Plus(el: Expr, e2: Expr) extends Expr new Plus(new Num(2), new Num(2))
case class Times(el: Expr, e2: Expr) extends Expr o Python

))) . Plus (Num(2) ,Num(2))

@ Again one can easily write functions to traverse them
using pattern matching: © Haskell
def size (e: Expr): Int = e match { Plus (Num(2) ,Num(2))
case Num(n) => 1 @ Scala: (the “new” is optional for case classes:)

case Plus(el,e2) => new Plus(new Num(2),new Num(2))

size(el) + size(e2) + 1 Plus (Num(2) ,Num(2))
case Times(el,e2) =>
size(el) + size(e2) + 1

Concrete vs. abstract syntax

Abstract syntax trees Structural Induction

Precedence, Parentheses and Parsimony

@ Infix notation and operator precedence rules are
convenient for programmers (looks like familiar math) but
complicate language front-end

@ Some languages, notably LISP/Scheme/Racket, eschew
infix notation.

@ All programs are essentially so-called S-Expressions:
sz=al(as - s,

so their concrete syntax is very close to abstract syntax.

@ For example

1+ 2 -—> (+ 1 2)
1 +2 %3 -—> (+ 1 (x 2 3))
(1 +2) *3 —> (x (+12) 3)

Concrete vs. abstract syntax

Abstract syntax trees Structural Induction

The three most important reasoning techniques

@ The three most important reasoning techniques for
programming languages are:
o (Mathematical) induction
o (over N)
o (Structural) induction

o (Rule) induction

@ We will briefly review the first and present structural
induction.

@ We will cover rule induction later.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

The three most important reasoning techniques

@ The three most important reasoning techniques for
programming languages are:
o (Mathematical) induction

e (Structural) induction

e (Rule) induction

@ We will briefly review the first and present structural
induction.

@ We will cover rule induction later.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

The three most important reasoning techniques

@ The three most important reasoning techniques for
programming languages are:
o (Mathematical) induction
o (over N)
e (Structural) induction
o (over ASTs)
o (Rule) induction

@ We will briefly review the first and present structural
induction.

@ We will cover rule induction later.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

The three most important reasoning techniques

@ The three most important reasoning techniques for
programming languages are:
o (Mathematical) induction
o (over N)
e (Structural) induction
o (over ASTs)
o (Rule) induction
o (over derivations)
@ We will briefly review the first and present structural
induction.

@ We will cover rule induction later.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Induction over expressions

@ A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:
o P(n) holds for every number n € N

o for any expressions e, 2, if P(e1) and P(e2) holds then
P(e1 + e2) also holds

o for any expressions e, e, if P(e1) and P(e2) holds then
P(e1 x ey) also holds

Then P(e) holds for all expressions e.

@ Note that we are performing induction over abstract
syntax trees, not numbers!

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Induction

@ Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:
e P(0) holds
o for any n € N, if P(n) holds then P(n+ 1) also holds

Then P(n) holds for all n € N.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Proof of expression induction principle

Define the size of an expression in the obvious way:

size(n) = 1
size(ey) + size(ex) + 1
size(ey) + size(ey) + 1

size(e; + &) =
size(e; X &) =

Given P(—) satisfying the assumptions of expression induction,
we prove the property

Q(n) = for all e with size(e) < n we have P(e)

Since any expression e has a finite size, P(e) holds for any
expression.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Proof of expression induction principle

We prove that Q(n) holds for all n by induction on n:
@ The base case n = 0 is vacuous

@ For n+ 1, then assume Q(n) holds and consider any e
with size(e) < n+ 1. Then there are three cases:

o if e=m & N then P(e) holds by part 1 of expression
induction principle

o if e = e; + e then size(e;) < size(e) < n and similarly
for size(ey) < size(e) < n. So, by induction, P(e;) and
P(e2) hold, and by part 2 of expression induction
principle P(e) holds.

e if e = e; X e, the same reasoning applies.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Summary

@ We covered:
e Concrete vs. Abstract syntax
o Abstract syntax trees

e Abstract syntax of La,ith in several languages
e Structural induction over syntax trees

@ This might seem like a lot to absorb, but don't worry! We
will revisit and reinforce these concepts throughout the
course.

@ Next time:

e Evaluation
o A simple interpreter
e Operational semantics rules

