Today

Elements of Programming Languages

Lecture 1: Abstract syntax

James Cheney

University of Edinburgh

September 21, 2017

We will introduce some basic tools used throughout the course:

- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

		▶ < ≣ > _ ≣ - প্ର @			▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
L _{Arith}			Concrete vs.	abstract syntax	

- We will start out with a very simple (almost trivial) "programming language" called L_{Arith} to illustrate these concepts
- $\bullet\,$ Namely, expressions with integers, + and $\times\,$
- Examples:
 - 1 + 2 ---> 3 1 + 2 * 3 ---> 7 (1 + 2) * 3 ---> 9

- **Concrete syntax:** the actual syntax of a programming language
 - Specify using context-free grammars (or generalizations)
 - Used in compiler/interpreter front-end, to decide how to interpret **strings** as programs
- Abstract syntax: the "essential" constructs of a programming language
 - Specify using so-called *Backus Naur Form* (BNF) grammars
 - Used in specifications and implementations to describe the *abstract syntax trees* of a language.

Concrete vs. abstract syntax

Abstract syntax trees

CFG vs. BNF

- Context-free grammar giving concrete syntax for expressions
 - $E \rightarrow E$ PLUS $F \mid F$ $F \rightarrow F$ TIMES $F \mid$ NUM | LPAREN E RPAREN
- Needs to handle precedence, parentheses, etc.
- Tokenization (+ \rightarrow PLUS, etc.), comments, whitespace usually handled by a separate stage

BNF grammars

• BNF grammar giving abstract syntax for expressions

 $Expr \ni e ::= e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N}$

- This says: there are three kinds of expressions
 - Additions $e_1 + e_2$, where two expressions are combined with the + operator
 - Multiplications $e_1 \times e_2$, where two expressions are combined with the \times operator
 - Numbers $n \in \mathbb{N}$
- Much like CFG rules, we can "derive" more complex expressions:

$e ightarrow e_1+e_2 ightarrow 3+e_2 ightarrow 3+(e_3 imes e_4) ightarrow \cdots$

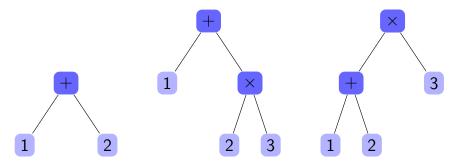
	< □ ▶ <	ロット ヘビット ヘビット クタル			▲□▶▲圖▶▲≣▶▲≣▶ ≣ りへぐ
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
BNF conventions			Abstract Syntax	Trees (ASTs)	

- We will usually use BNF-style rules to define abstract syntax trees
 - and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.
- **Convention:** the subscripts on occurrences of *e* on the RHS don't affect the meaning, just for readability
- **Convention:** we will freely use parentheses in abstract syntax notation to disambiguate

• e.g.

$$(1+2) imes 3$$
 vs. $1+(2 imes 3)$

We view a BNF grammar to define a collection of *abstract syntax trees*, for example:



These can be represented in a program as trees, or in other ways (which we will cover in due course)

С	oncrete	VS. a	abstract	svntax

Languages for examples

Abstract syntax trees

Structural Induction

ASTs in Java

- We will use several languages for examples throughout the course:
 - Java: typed, object-oriented
 - Python: untyped, object-oriented with some functional features
 - Haskell: typed, functional
 - Scala: typed, combines functional and OO features
 - Sometimes others, to discuss specific features
- You do not need to already know all these languages!

• In Java ASTs can be defined using a class hierarchy: abstract class Expr {} class Num extends Expr { public int n; Num(int _n) { n = n;}

	• • • •	□ → ▲目 → ▲目 → ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		< • • > < <i>6</i>	・ < 臣 > < 臣 > < 臣 > < 臣 > < ○ < ○
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
ASTs in Java			ASTs in Java		

• In Java ASTs can be defined using a class hierarchy:

```
. . .
class Plus extends Expr {
  public Expr e1;
  public Expr e2;
  Plus(Expr _e1, Expr _e2) {
    e1 = _e1;
    e2 = _e2;
  }
}
class Times extends Expr {... // similar
}
```

```
• Traverse ASTs by adding a method to each class:
 abstract class Expr {
    abstract public int size();
  }
 class Num extends Expr { ...
    public int size() { return 1;}
  }
 class Plus extends Expr { ...
   public int size() {
      return e1.size() + e2.size() + 1;
  }
 class Times extends Expr {... // similar
  }
```

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

Structural Induction

ASTs in Python

ASTs in Haskell

Python is similar, but shorter (no types):
class Expr:
pass # "abstract"
class Num(Expr):
<pre>definit(self,n):</pre>
self.n = n
def size(self): return 1
class Plus(Expr):
<pre>definit(self,e1,e2):</pre>
self.e1 = e1
self.e2 = e2
<pre>def size(self):</pre>
return self.e1.size() + self.e2.size() + 1
class Times(Expr): # similar
(日)

٩	In Haskell, ASTs are easily defined as <i>datatypes</i> :
	data Expr = Num Integer Plus Expr Expr Times Expr Expr
٩	Likewise one can easily write functions to traverse them:
	<pre>size :: Expr -> Integer size (Num n) = 1 size (Plus e1 e2) = (size e1) + (size e2) + 1 size (Times e1 e2) = (size e1) + (size e2) + 1</pre>

Abstract syntax trees

ASTs in Scala

Concrete vs. abstract syntax

• In Scala, can define ASTs conveniently using *case classes*: abstract class Expr case class Num(n: Integer) extends Expr case class Plus(e1: Expr, e2: Expr) extends Expr case class Times(e1: Expr, e2: Expr) extends Expr

Abstract syntax trees

• Again one can easily write functions to traverse them
using pattern matching:
def size (e: Expr): Int = e match {
 case Num(n) => 1
 case Plus(e1,e2) =>
 size(e1) + size(e2) + 1
 case Times(e1,e2) =>
 size(e1) + size(e2) + 1
}

${\sf Creating} \ {\sf ASTs}$

Concrete vs. abstract syntax

- Java:
 - new Plus(new Num(2), new Num(2))
- Python:
 - Plus(Num(2),Num(2))
- Haskell:

Plus(Num(2),Num(2))

• Scala: (the "new" is optional for case classes:) new Plus(new Num(2),new Num(2)) Plus(Num(2),Num(2))

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ ▲回▼

Structural Induction

Precedence, Parentheses and Parsimony

- Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end
- Some languages, notably LISP/Scheme/Racket, eschew infix notation.
- All programs are essentially so-called S-Expressions:

$$s ::= a \mid (a \ s_1 \ \cdots \ s_n)$$

so their concrete syntax is very close to abstract syntax.

• For example

1 + 2	> (+ 1 2)
1 + 2 * 3	> (+ 1 (* 2 3))
(1 + 2) * 3	> (* (+ 1 2) 3)

The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
 - (Mathematical) induction
 - (Structural) induction
 - (Rule) induction
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

Concrete vs. abstract syntaxAbstract syntax treesStructural InductionConcrete vs. abstract syntaxThe three most important reasoning techniquesThe three mostThe three most

- The three most important reasoning techniques for programming languages are:
 - (Mathematical) induction
 - (over \mathbb{N})
 - (Structural) induction
 - \bullet (Rule) induction
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

The three most important reasoning techniques

Abstract syntax trees

- The three most important reasoning techniques for programming languages are:
 - (Mathematical) induction
 - (over \mathbb{N})
 - (Structural) induction
 - (over ASTs)
 - (Rule) induction
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 画 ◆ ○ ○ ○

Structural Induction

Abstract syntax trees

Induction

The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
 - (Mathematical) induction
 - (over ℕ)
 - (Structural) induction
 - (over ASTs)
 - (Rule) induction
 - (over derivations)
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

• Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

- P(0) holds
- for any $n \in \mathbb{N}$, if P(n) holds then P(n+1) also holds
- Then P(n) holds for all $n \in \mathbb{N}$.

	< □ > <	⊡ ► < ≣ ► < ≣ ► • ■ • • • • • • • • • • • • • • • • •			★ E → ★ E → E → 9 < 0
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
Induction over expressions			Proof of expression induction principle		

induction over expressions

• A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

- P(n) holds for every number $n \in \mathbb{N}$
- for any expressions e_1, e_2 , if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 + e_2)$ also holds
- for any expressions e_1, e_2 , if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 \times e_2)$ also holds

Then P(e) holds for all expressions e.

• Note that we are performing induction over *abstract* syntax trees, not numbers! ▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Proof of expression induction principle

Define the *size* of an expression in the obvious way:

size(n) = 1 $size(e_1 + e_2) = size(e_1) + size(e_2) + 1$ $size(e_1 \times e_2) = size(e_1) + size(e_2) + 1$

Given P(-) satisfying the assumptions of expression induction, we prove the property

$$Q(n) =$$
for all e with $size(e) < n$ we have $P(e)$

Since any expression e has a finite size, P(e) holds for any expression.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Summary

Proof of expression induction principle

Proof.

We prove that Q(n) holds for all *n* by induction on *n*:

- The base case n = 0 is vacuous
- For n + 1, then assume Q(n) holds and consider any e with size(e) < n + 1. Then there are three cases:
 - if e = m ∈ N then P(e) holds by part 1 of expression induction principle
 - if e = e₁ + e₂ then size(e₁) < size(e) ≤ n and similarly for size(e₂) < size(e) ≤ n. So, by induction, P(e₁) and P(e₂) hold, and by part 2 of expression induction principle P(e) holds.
 - if $e = e_1 \times e_2$, the same reasoning applies.

• We covered:

- Concrete vs. Abstract syntax
- Abstract syntax trees
- Abstract syntax of $\mathsf{L}_{\mathsf{Arith}}$ in several languages
- Structural induction over syntax trees
- This might seem like a lot to absorb, but don't worry! We will revisit and reinforce these concepts throughout the course.
- Next time:
 - Evaluation
 - A simple interpreter
 - Operational semantics rules

- ▲ ロ ▶ ▲ 昼 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで