e
AR S

2017-11-20

Metaswitch Networks | © 2017 | 1 aﬁ‘etQSWitCh

Outline

 Common vulnerabilities in software today

* Linear types

* Region types

* The Rust programming language

* How Rust’s type system ensures memory and APl safety
* High performance communications software

* Conclusion and further reading

NSRS metaswitch

Common vulnerabilities

metaswitch

Some recent vulnerabilities in Apache httpd
APACHE

HTTP SERVER PROJECT

q

o

Apache httpd 2.2 vulnerabilities

This page lists all security vulnerabilities fixed in released versions of Apache httpd 2.2. Each vulnerability is given a security impact rating by the Apache security team - please note that this rating may we
Apache httpd the flaw is known to affect, and where a flaw has not been verified list the version with a question mark.

Please note that if a vulnerability is shown below as being fixed in a "-dev" release then this means that a fix has been applied to the development source tree and will be part of an upcoming full release.

This page is created from a database of vulnerabilities originally populated by Apache Week. Please send comments or corrections for these vulnerabilities to the Security Team.

Fixed in Apache httpd 2.2.35-dev

low: Use-after-free when using <Limit > with an unrecognized method in .htaccess ("OptionsBleed") (CVE-2017-9798)

When an unrecognized HTTP Method is given in an <Limit {method}> directive in an .htaccess file, and that .htaccess file is processed by the corresponding request, the global methods table is
corrupted in the current worker process, resulting in erratic behaviour.

This behavior may be avoided by listing all unusual HTTP Methods in a global httpd.conf RegisterttipMethod directive in hitpd release 2.2.32 and later.
To permit other htaccess directives while denying the <Limit > directive, see the AllowOverrideList directive.

Source code patch is at;

» hitp:/iwww.apache org/dist/hitpd/patches/apply_to_2.2 34/CVE-2017-9798-patch-2.2 patch

Note 2.2 is end-of-life, no further release with this fix is planned. Users are encouraged to migrate to 2.4.28 or later for this and other fixes.

Acknowledgements: We would like to thank Hanno Béck for reporting this issue.

Reported to security team 12th July 2017
Issue public 18th September 2017

Affects 22342232 2231,2229 2227 2226, 22252224 2223 2222 2221,2220,2219,2218,2217,2216,2215,2214,2213,2212,2211,2210,
229,228,226,225,224,223,222,220

Fixed in Apache httpd 2.2.34

important: Uninitialized memory reflection in mod_auth_digest (CVE-2017-9788)

The value placeholder in [Proxy-]Authorization headers of type 'Digest' was not initialized or reset before or between successive key=value assignments. by mod_auth_digest.

Providing an initial key with no '=' assignment could reflect the stale value of uninitialized pool memory used by the prior request, leading to leakage of potentially confidential information, and a
segfault.

Acknowledgements: We would like to thank Robert Swiecki for reporting this issue.

gi?name=CVE-2017-9798

Metaswitch Networks | © 2017 | 4

metaswitch

APACHE

I~ HTTP SERVER PROJECT

Apachs hitpd 2.2 vulnerabiities

Tris page s 2l Secury vainaraolities fiad in relessed versions of Agache fmod 23, Sach vainenaoiiy s ghen
i ing e I 8 ey releama Ten TS Mesns T T e D
Thils pisge I cramat fon Apsche Wask

Fixed In Apache httpd 22 35-gev

how: Lkse-athar-Tres whan using =Limit = with an hod In _htacoass "Opth]

'i¥han an unrecogaitzad HTTF Mamod i ghven in an <Limi imamodf- direcie i an iacosss fiie, and Tiat st
Thils pehavior may e avoided by Isting ol unsaal HTTR Methods In a ghosal head.conf Regissar-Rahieod o

o parmit omar e eLimi = see e 52 irace.

Source code pach i At

* M. anache orpdisad nrches e 2.2 340CVEZ017-57 38 pach2 2 pencn

Biode 22 b anortiite, mo frher release Wi T T Is plannad. Usars ane ancouraged S migrats 5o 24.25 or i

v e wouid Tioe 30 53k %or reporting i mzue.

Fotporisd 1o sacurty tmam 129 July 2017

55U punlic 153 Sepoemiver 2017
Fe— locoe, ooz 2o, Som. 0007, So0s 2o, Sooh oom Soc 2ooaE
Fixed In Apache hitpd 2234

important: Uninttislizsd memory refisction In mod_auth_digest (CVE-2017-5755)

PR Aamortzaios “yDe Diges? was not Inkialized of reset betore or Detwes
Frouiging am il key Wi i ' asige oy e by 2
T W wouild lloe %o t Swipckl for reporting Tis Issus.

Fetnorisd 10 sacurty tsam (25 June 2017

Imzus punlis i July 2017
Rpians Relessan 3 July 2017
P Eow ool SoS oo Sim iom Sooi ST oo Soo Tome T

important: ap_get_bask_suth_pw() suthentication Bypass (CVE-2017-315T)

Use off o an,_pea_Dasic_sun_owd) by gDy of e ey bl %0 auTe
Thirgparsy modile wiiters SHOULD use ap_ges_basic_sm_componentss), availiale In 2.2 34 and £.4.35, Inster

Acnowiesgemants: We would Tios 50 Sank Emmanus] Dreyts Sor naporing TS ssus.

Fetporsd 10 sacurty tsam S Fabnary 2017

Immus punlls 19 June 2017
Wptane Relassad 1 July 2017
[Py loos ooul Sooo Doo7 Soon SoDh Soos SoTn Soon Sod DOm0 2T

imiportant: mod_ssl Null Pointsr Dersfersncs (CVE-2017-318%)
moa_ss1 may densterance & NULL poliier when Shid-pary mocies: <all an_hook_Brocess_conneciion) during &
Ackmowletigemenis: We wouit Tlos o Shank Vaslislos Panopouios and AdNowm informatk AG e reporting Sis

Fitporisd t0 sacurty tsam 59 December 2015

Immus punlhs 159 June 2017
Wpians Relessan 3 Juily 2017
- bow coul SooE Soo7 SooE Dok Coor SoTE Soo ool Zoo0 2T

important: ap_find_toksn(} Buffer Overresd [CVE-2017-T65E)
The HTTF 57ict parsing changes aoded in .2 32 and 2424 Invocuced a bug in 3oken s parsing, which alion:
Acknowiedgements: W would Tios 30 Shank Javier Jiménez Javimon@gmaiL coml) o reporing s ssue.

Fispored 10 Securfy tsam 5 May 2017

Imzus gl 199 June 2017
Wpians Relessan 3 July 2017
ez E2se

Important: mod_mims BuTfer Ovenmsad (CVE-2017-TET3)
oa_mmima o resd oma oo DSt T e of 8 Duter wnen senging 8 malisious Comen Tine responss hasser
Ackrcwlenipemens: e woul Tie 10 Siark Chenin and Hanno SO0 107 reporing Tl s3us.

Fiporer 10 Securfy =am 15T Nowsmioer 2015
Imzus punlls 15 June 2017

Some recent vulnerabilities in Apache httpd

Fetnored s sacurty mam 15 Nowsmoer 2015

I=sue punlic 190 June 2017
Lipans Reiasmed 1 Juily 2017
[Fr D232 223122092007, D006, 2005, D004, 205, 2002 2201, 2200, 2219, 2248, 2247, 22,

important: Apache HTTP Request Parsing VWhitespacs Dafects [CVE-2018-5743)

Apacne HTTF Saner. orior 42522 37), acoapted & broad wom agan iz

s =1 fe vatse e

SFCTII0 Saction 35 calis out same of

323 eliminaten and clarified e roke of implied Wt

cnanacier Secion 324 Rasziace fom M rag: Bl price 50 The " characier, wiille Se
™ mod s i any oroies or Ting

Droy gt In & sequance of o requasis, TS rasulis I ragues? A o The firs? proxy Daing inarprated & raquas A+ A by e Dackent
™ Agache HTTF Server .4 25 ang cooninanes oy = new orecive

» HEpProtocoiOntions Syict

whikch i e detault Denavior of 2.4 25 and aner. Sy 50pgiing $om ‘SyicY Danavior 1o ‘Unsate’ Denavior, same of the resyictions may be re
=liow omer REC regu Such a5 exactly Wo I e request line.

Acknowledpamants: We would s % Tank Dauid Darmariine & 1EM Securfiys X-Foroe Reasasrchars ax wail & Rigls Larcy for ach rag

Fitportad S0 sacurtyy taam 108 Fasruary 2015

iszus public ‘20en Decamiber 2016

- 13 Jarary 2017

Afiecs B251,2009 2007 2006 D008 2004, 0003 2020 20,2000, 2219, 2218, 2247, 2246, 22
nia: HTTP_PROXY vanizbis “httpoxy [CVE-2018-5357)

HTTP_PROXY Is & well-gefis n & mumiper of failied 30 suoid ©

Thiis workaround = DACh ane doTumENtT 1N e ASS ACUISOTY 81 DS ey SDache opises,

iyl s HImpONyPeSponS

AckowhagEmETS: e would ke 10 Shark Dominkc = Geary of Vend for 6 T Ime.
Feporied % secuy team 2o July 2016
s puslic 18 July 2016
Uniste Reieamed 18 July 2016
Aftecs E31,2209, 2207, 2006, 2006, 2204, 2203, 0058, 2251, 2290, 2219, 2218, 2817, 2216, 2.

Fixed In Apachs httpd 2231

low: HTTP raguest atts st parsar [CVE-2015-3183)

AN HTTP requas: sggling & EELEY LA ‘ol foroe e sene

: This. tgls Lenoy.

Fetported %o sacurty tsam 43 Agrll 2015

Issue pudlic F June 2015
Uinians Ralassag 183 July 2015
[P 2258 2077 2205 2005 D224 2273 2022 22712520 2245 224222472248 224523

Fiusd In Apachs httpd 2229

Important: mod_cghd dental of ssrvics [CVE-2014-0231)

A Tl wis S0und In mo_ogidl. I & Senver using mod_ Inpert, & remote amacker .

: This. Jung of e ASF

Fitported %o sacurty team 150 June 2014

Imzue pullc 14 Juiy 2014
Uit Reisaed 5 Semnemiver 2014
Aftecs 2237,2226 2225 2234, 2253, 2008 2251, 2220, 2219, 2218, 2217, 2216, 2215, 2214, 22,

Jow: HTTP Trallers procsssing bypess (CVE-2013-5704)

HTTE papiace HTTP hasters wndlng o

Tris i acos e dipactiue 50 pastone lagacy

: This. g : Swande

FReponsd 1o securky s=am St Sepiamier 2013
Issue pudlic 15 October 2013
Uipciane Rajassa Sl Sapteminer 2014

moderata: mod_statues butfer overfiow [CVE-2014-0228)

A race comaition was found N Mos_Siats. AR amacher sgie Nz server s ming & Trasded |

: This sroemeie, ARAT-1 ang ZIT3I00TIN0R ST VL

Fmporied $0 sacurfy Saam 308 May 2014

Immue puinils 14 July 2014
Lipciane Releasad 3 Sapnambar 2014
At 22272225 2005 2204 2203, 2222 2221, 2220, 2219, 2248, 22147, 2246, 2245, 2.2

Fixed In Apache hitpd 2237
low: mod_log_config crash [CVE-2014-0055)

Al weas found In miod_log_confip. A ramote afiackar could sand & crasn.

: This M Canman

Fi=poren 10 Securfy deam 25T Feonary 2014

e punilc 175 March 204
Upime Fsiessen 26 March 2014
Aftecs 2226,2225,2224, 2003, 20400, 2001, 2220, 2219, 2218, 22407, 2216, 2215, 2214, 22,

modsrats: mod_dav crash {CVE-2013-5435)

2 17 moa_saw ty e endl of she s7ing -] and pi NUL char

: This g Znang £ Amiin Torm of Newstar

Rported 30 securty saam 10 Dacembar 2013

Ismue il 17 March 2014
Uit Fsiessed 26 March 2014
Aftecs 2226,2225,2024, 2003, 2000, 2001, 2200, 2219, 2248, 2247, 2216, 22195, 2214, 22,

Fixed In Apache httpd 2225

low: mod_rewrits log escaps fittering (CVE-2013-1352)

mod_y om kogs, = eamiar for amackens % sen Mose sagus
:This
Repored 10 securty seam 139 March 2013
sz pusiic 15 Agril 2013
pdse Rslemsed 2l Juiy 2013
Fr— 2223 2222 22215250, 2219, S018, £24T, 2516, 2215, 2514 2215 2215 22 M. 22
moderata: mod_dav crash [CVE-2013-1856)
Sanaing st a | Yod_gau_sin wim of 2s200L
- Tris e by Ean Fagar

Fi=pored 10 SeCurly s2am 7 March 2013
Immue puinils 3 May 213
] Z2nd July 2013
At 2223 2220 2274, 2220, 2219, 2248, 2247, 2216, 2215, 2214, 2243, 2242, 221, 22

Fiusd In Apachs hitpd 2234

low: X5% dus to unescaped hostnames [CVE-2012-3435)

arlous XSS fisws dut % unassaney Rosnames snd LRSS HTHL canmer in moa_inta, mod_sssus, mod_lmagama, mod_kisa,
: This

Repored 1o securty beam (113 July 2012

Issus puniic 15 Fetnusry 2013

Usaiene Releasea 25 Feoruary 2013

Afiecs ooy 2ozn an2q, 2200, 2019, 2018, 2017, 2016, 2215, 2044, 2213, 2212, 22 1, 22

maosrate: X33 In mod_proxy_balancer {CVE-2012-4555)

A XSS flaw afi=cied She moC_prooy_balancer manager intertace.

: This

Rmported 30 securty seam (7 Ocaber 2012

= smmsscsssscQp YR apache-ergSecurity/vulnerabilities 22.html

miosderate: mod_defiats dental of sarvics [CVE-2014-01135)

A rascurce conmumEtion flaw was found I mod_efise. I paguas? body GacOmpression was configurad (using She DEFLATE” gt fite

: This. Peliagring and Dawide Satzaros!

Fieporen 10 ety mam 150 Faonusry 2014

e

Metaswitch Networks | © 2017 | 5

Fixed In Apachs hitpd 22

ow:

Sosmioie KIS for shas waizh use

metaswitch

http://httpd.apache.org/security/vulnerabilities_22.html

CVE-2010-0425 (found by senseofsecurity.com.au)

* CVE: “modules/arch/win32/mod_isapi.c in mod_isapi in the Apache HTTP Server 2.0.37 through 2.0.63,
2.2.0 through 2.2.14, and 2.3.x before 2.3.7, when running on Windows, does not ensure that request
processing is complete before calling isapi_unload for an ISAPI .dll module, which allows remote attackers to
execute arbitrary code via unspecified vectors related to a crafted request, a reset packet, and "orphaned
callback pointers."”

* |nitial report: “By sending a specially crafted request followed by a reset packet it is possible to trigger a
vulnerability in Apache mod_isapi that will unload the target ISAPI module from memory. However function
pointers still remain in memory and are called when published ISAPI functions are referenced. This results in
a dangling pointer vulnerability. Successful exploitation results in the execution of arbitrary code with
SYSTEM privileges.”

ﬂ‘?\ _f_‘ Common Vulnerabilities and Exposures
\':_; pe The Standard for Information Security Vulnerability Names

metaswitch

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2010-0425
http://www.senseofsecurity.com.au/advisories/SOS-10-002

Dangling pointer vulnerability in Apache httpd (CVE-2010-0425)

* Load a module to handle a request.

* Install a callback to invoke the module.

* Request fails.

* Unload the module.

* Trigger the callback (e.g., by a subsequent request which reloads the module).

* Callback tries to call the module at the old address,

but instead calls the new contents of that address — which are now part of the second request.
* Request has been carefully crafted to put x86 instructions at that location.

e Attacker’s code is executed.

metaswitch

The fix

Do not unload an isapi .dll module until the request proces:
Submitted by: Brett Gervasoni <brettg senseofsecurity.com>,
Reviewed by: trawick, wrowe

-- httpd/httpd/trunk/modules/arch/win32/mod_isapi.c 201¢
+++ httpd/httpd/trunk/modules/arch/win32/mod_isapi.c 201¢
@@ -1503,7 +1503,6 @@

/* Set up the callbacks */

* Need two rules to fix:

- Once something is freed, it can’t be used
(ownership).

- An object must be valid as long as
any reference to it exists (lifetime).

cid->ecb->ReadClient = ReadClient; .. //forexample; others

/* Set up client input */
res = ap_setup _client block(r, REQUEST_CHUNKED ERROR);
if (res) {
- isapi_unload(isa, 9);
return res;

}

@@ -1534,7 +1533,6 @@
}

if (res < 0) {
- isapi unload(isa, 90);
return HTTP_INTERNAL_SERVER_ERROR;

ey jor spuce orr sriuc

* http://svn.apache.org/viewvc?view=revision&revision=917870

metaswitch

http://svn.apache.org/viewvc?view=revision&revision=917870

Linear types

metaswitch

A simple type system

F|—81:T1 F;X:T]_ |_82:T2

: (Let)
['HFlet x=eq1n e5:Ty
(Var)
I'x:T+x:T
['Feq:To,->T; T'key: Ty
(App)

F|—€1 €- :Tl

let x = bake _a cake();
eat(x);

have(x);

eat(x)

Syntactic sugar:
. el;e2

== let = el in e2

. let x = el; e2

= Jlet x = el in e2

. el(e2)
== el e2

metaswitch

Fixing the type rules — a linear type system

- let x = bake a cake();

['1Feq:T ['5,x:T1 ey :T eat(x);
176111 2,% .1 €2:12 (Let) have(x);
Fl,rz Flet x= €1 1N elez eat(x)

error[E@382]: use of moved value: ~x°

(Var) --> src/main.rs:17:10
xX:T Fx:T |
16 | eat(x);
1"1 |_el:T2_)T1 1"2 |_ez :TZ | - value moved here
(App) 17 | have(x);
Fl,rz = elelel | A value used here after move
|

note: move occurs because "x has type
“std::string::String , which does not implement the
“Copy trait

metaswitch

Region types

metaswitch

Two programs (with block scoped allocation)

let £ = {let x = (2,3); let f = {let x = (2,3);
if x.0 == 0 { lyl (x.0,y)
lyl (@,y) }s
} else { f(5)
Iyl (y,y)
}
}s5
f(5)
« =>(5,5) * =>ERROR! Use of x after free!

metaswitch

Annotating the program with regions (Tofte & Talpin, 1994)

let £ =

let x = (2 , 3) ;
(lyl (x.0,y))

(5)

metaswitch

Regions (lifetimes) in Rust

let ¥ = error[E@597]: "x does not live long enough
{let X = (2,3); --> src/main.rs:11:23
|
Iyl (x-8, ¥) 11 | (Iy| (x.e, y))
¥ | --- ~ does not live long enough
f(5) | |
| capture occurs here
12 | }s
| - borrowed value only lives until here
13 | println! ("{:?}", f(5))
14 | }
|

- borrowed value needs to live until here

** Compile-time error

metaswitch

The Rust programming language

* A modern programming language (2009), originated and sponsored by Mozilla Labs (makers of Firefox)

* Focus on performance and safety

o

o

“Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.”

— rust-lang.org

“Rust is a systems language pursuing the trifecta: safe, concurrent, and fast” — This Week in Rust

fn main() {

let greetings

Jo— L=

= ["Hello", "Ciao", "Z Al B IEL",
|!DI_|-§E|_‘I|~.”E|!’ "[IESJ.E", "'Dlé"],‘,

for (num, greeting) in greetings.iter().enumerate() {
print!("{} : ", greeting);
match num {

8

[I A T Ry W S

>

*

>

' ' W

println! ("This code is editable and runnable!™)},
println!{"Questo codice & modificabile ed eseguibilel™),
println! ("Z @3 — FIIBEL TEiTHEEZS I "),

println! ("®H7|HMH ZEZE =Fotd =TE = USUTH™),
println! ("Ten kod moina edytowac oraz uruchomic!™),
println!("Este cddigo € editdvel e executavel!™),

ih

metaswitch

https://www.rust-lang.org/en-US/
https://this-week-in-rust.org/blog/2017/11/14/this-week-in-rust-208/

Fast, concurrent, safe

* Fast Other languages:
. Compiles to native machine code. Competes with C/C++ for raw speed.
. C/C++:
- No runtime, no scheduler, no startup.
* Fast: yes
- No garbage collector — predictable performance. « Concurrent: yes

. Zero-cost abstractions. e Safe: no

* Concurrent

Java/Scala:
- Multi-threaded or coroutine-based e Fast: sort-of

- Can use multiple cores * Concurrent: yes
» Safe: sort-of

. Protection from data races

- Threadsafe toolkit in standard library
» Safe
- Memory safety: no double frees, no NULL pointers, no dangling pointers, no scribblers

- APl safety: compile-time API checking, no “unexpected behaviour”

metaswitch

Ownership in Rust

fn take(v: Vec<i32>) {

fn foo() { | L]
let v = vec![1, 2, 31; // What happens here 1isn’t important.
}
¥
let v = vec![1l, 2, 3]; let v = vec![1l, 2, 3];
let v2 = v; take(v) ;
println! ("v[0] is: {}", v[0]); println!("v[O0] is: {}", v[O]);
error: use of moved value: “v° error: use of moved value: “v°
println! ("v[0] is: {}", v[0]); println! ("v[0] is: {}", v[0]);
A A

e et 6200015 metaswitch

Borrowing

fn main() {

// This borrows an immutable reference.

fn sum vec(v: &Vec<i32>) -> 1i32 {
v.iter().fold(0, |a, &]| a + b)

}

// Borrow two vectors and sum them.

// This kind of borrowing does not allow mutation through the borrowed reference.

fn foo(vl: &Vec<i32>, v2: &Vec<i32>) —-> 1i32 {
// Do stuff with "vl1° and “v2' .
let s1 = sum_vec(vl);
let s2 = sum_vec(v2);
// Return the answer.
sl + s2

let vl = vec![1l, 2, 3];
let v2 = vec![4, 5, 6];

let answer = foo(&vl, &v2);
println! ("{}", answer);

Metaswitch Networks | © 2017 | 20 metOSWitCh

Mutable references

let mut x = 53
{ let mut x = 5;

let y = &mut x;
} oxy += 1;
pr
printlnt ("4, x)3

error: cannot borrow 'x° as immutable because it is also borrowed as mutable
println! ("{}", x);
A
note: previous borrow of "x° occurs here; the mutable borrow prevents
subsequent moves, borrows, or modification of 'x until the borrow ends
let y = &mut x;

A

note: previous borrow ends here
fn main() {

e et 620 o metaswitch

Borrowing rules in Rust

* Any borrow must last for a scope no greater than that of the owner.
* Each resource may have one or the other of these two kinds of borrows, but not both at the same time:

- One or more references (&T) to a resource.

Exactly one mutable reference (&mut T) to a resource.

* These rules are sufficient to make data races impossible in Rust!

There is a ‘data race’ when two or more pointers access
the same memory location at the same time, where at
least one of them is writing, and the operations are not
synchronized.

* Also prevents things like:
Iterator invalidation (mutating a collection while you’re iterating over it).

. Use after free

metaswitch

Lifetimes in Rust

* Lending out a reference to a resource owned by someone else:

i | acquire a handle to some kind of resource.
o | lend you a reference to the resource.
. | decide I’'m done with the resource, and deallocate it, while you still have your reference.

. You decide to use the resource. BOOM — dangling pointer / use after free!

let r;

{
let i = 1;
r = &ij;

}

println! ("{}", r);

metaswitch

Lifetimes

fn skip_prefix<'a, 'b>(line: &'a str, prefix: &'b str) —> &'a str {

//

let line = "lang:en=Hello World!";
let lang = "en";

let v;

{
let p = format! ("lang:{}=", lang); // —+
v = skip_prefix(line, p.as_str()); // |
} /] —+
println! ("{}", v);

Metaswitch Networks | © 2017 | 24

‘p’

‘p’

comes 1into scope.

goes out of scope.

metaswitch

More lifetimes

struct Foo<'a> {

x: &'a 132,
¥
fn main() {
let y = &3 // This is the same as 'let _y = 5; let y = & vy; .
let ¥ = Foo { x: vy };
println! ("{}", f.x);
¥
let x: &'static str = "Hello, world.";

 |nference and elision

e et | 6200 25 metaswitch

In practice

* The type system is picky, but it ensures that Rust code cannot access a dangling pointer, or change a value
under the feet of another caller.

* These guarantees are zero-cost: all the work is done at compile time.
* Learning curve of using a type system:

- “Many new users to Rust experience something we like to call ‘fighting with the borrow checker’, where the Rust
compiler refuses to compile a program that the author thinks is valid. This often happens because the programmer’s
mental model of how ownership should work doesn’t match the actual rules that Rust implements. You probably will
experience similar things at first. There is good news, however: more experienced Rust developers report that once
they work with the rules of the ownership system for a period of time, they fight the borrow checker less and less.”

metaswitch

More than just pointers

metaswitch

A dangerous API

fn main() {
let rustfest_letter = Letter::new(String::from("Dear RustFest"));
let mut rustfest_envelope = buy_prestamped_envelope();
rustfest_envelope.wrap(&rustfest_letter);

let mut lorry = order_pickup();
lorry.pickup(&rustfest_envelope);
lorry.done();

pub struct Letter {
text: String,

}

pub struct Envelope {
letter: Option<Letter>,

}

pub struct PickuplLorryHandle {
done: bool,
// references to lorry's resources From: A hammer you can only hold by the handle (video, slides)

Andrea Lattuada (ETH Zirich), RustFest 2017
metaswitch

https://youtu.be/3Q2hQfYW-XM
https://speakerdeck.com/utaal/a-hammer-you-can-only-hold-by-the-handle
https://people.inf.ethz.ch/andreal/

Ownership types for APl constraints

pub struct EmptyEnvelope { }

pub struct ClosedEnvelope {
letter: Letter,

¥
impl EmptyEnvelope {
pub fn wrap(self, letter: Letter) -> ClosedEnvelope {
ClosedEnvelope { letter: letter }

}
¥
impl PickuplLorryHandle {
pub fn pickup(&mut self, envelope: ClosedEnvelope) {
/* give letter */

}

pub fn buy_prestamped_envelope() -> EmptyEnvelope { EmptyEnvelope { } }

metaswitch

High-performance comms software

metaswitch

Metaswitch Networks

* Cloud-based communications software, powering more than 1,000 worldwide service provider networks.
* Commercial and open-source software solutions.

* Transforming communications networks — migration, virtualization, scale, reliability, manageability.

* Shift to microservices architecture

* Great opportunity to re-select a modern language to use henceforth
. Existing code: C, C++, Java, Scala, Python, Perl
Productive, but mixed experiences with all of them
- Needed: safety, flexibility, FFIl, tooling, ecosystem, and fun!

Rust ticked all the boxes.

* We’'re well along the path, gaining experience, and loving it.

metaswitch

Conclusion

Metaswitch Networks | © 2017 | 32 meta SWitCh

Conclusion

Further reading:

» Software engineering has a problem * Francois Pottier, A Linear Bestiary
. Common vulnerabilities * https://www.rust-lang.org/

* PL type systems offer a solution * Wikipedia on Rust
. Linear types and region types * Rust Book (1%t ed) bibliography - types

* Rust shows that it works in practice * The Rust Book (15t ed): chapter on ownership
- Fast, concurrent, safe — pick three e Metaswitch blog (e.g., 1, 2)

- Easily adopted

- Used in production

Contact me: Keith.Wansbrough@metaswitch.com
@kw217

e et 6200 metaswitch

http://pauillac.inria.fr/~fpottier/slides/fpottier-2007-05-linear-bestiary.pdf
https://www.rust-lang.org/
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://doc.rust-lang.org/stable/book/first-edition/bibliography.html#type-system
https://doc.rust-lang.org/stable/book/first-edition/ownership.html
https://www.metaswitch.com/the-switch
https://www.metaswitch.com/the-switch/from-cats-to-crustaceans-the-role-of-microservices-in-autotomizing-nfv
https://www.metaswitch.com/the-switch/metaswitch-swagger-codegen-for-rust-accepted-upstream

Additional slides

metaswitch

Annotating the program with regions (Tofte & Talpin, 1994)

let £ =

let x = (2 , 3) ;
(lyl (x.0,y))

(5)

metaswitch

Annotating the program with regions (Tofte & Talpin, 1994)

Region usage:

let f = * pu:x=1(2,3) —used during application
* ps: |yl (x.0,y) —used during application
let x = (2 , 3) ;
(ly|] (x.0,y)) * Ppe: 3 —not used: quickly destroyed
5
f(5) * pq:(2,5) —result of computation

° p,: 2 —partof result
° p3: 5—argument; part of result
* Region allocation:

. letregion p in e get(p,)

. _—

metaswitch

Tofte & Talpin’s type rules (selected)

TE + {x |—>,c.£1} Fe= ¢ g,
kpgkp T = [——}'/f'i fr‘\()C[‘I"\'(TE)

23
TEF Av.e = Ax.e’ at p:(7,p), {put(p)} (23)
TE e = e (p —=u,p), o1 TE F ey =€ i, o (21)
TEF e s 6 6ty Upa U ea U (e BeUA)) .
TEFe=ceipp pd&hv(lTE p) (27)

2

TE F ¢ = letregion p in ¢’ end: u, o \ {put(p),get(p)}

metaswitch

Regions (lifetimes) in Rust

let ¥ = error[E@597]: "x does not live long enough
{let X = (2,3); --> src/main.rs:11:23
|
Iyl (x-8, ¥) 11 | (Iy| (x.e, y))
¥ | --- ~ does not live long enough
f(5) | |
| capture occurs here
12 | }s
| - borrowed value only lives until here
13 | println! ("{:?}", f(5))
14 | }
|

- borrowed value needs to live until here

** Compile-time error

metaswitch

Passing back ownership?

fn foo(v: Vec<i32>) —-> Vec<i32> {

fn foo(vl: Vec<i32>, v2: Vec<i32>) -> (Vec<i32>, Vec<i32>, 1i32) {
// Do stuff with 'vl1' and “v2°

// Hand back ownership, and the result of our function.
(vi, v2, 42)
let vl = vec![1, 2, 3];

let v2 = vec![1, 2, 3];

let (vl, v2, answer) = foo(vl, v2);

Ugh! This is why Rust has borrowing.

e et | 620 metaswitch

Intro

Common vulnerabilities
Linear types

Region types

Rust intro

Ownership

Lifetimes

Summary

APl safety

Metaswitch

Conclusion

metaswitch

