
Rust: using linear and region types to
make the Internet more secure

Keith Wansbrough, Metaswitch Networks Ltd. 2017-11-20

Metaswitch Networks | © 2017 | 1

Outline

• Common vulnerabilities in software today

• Linear types

• Region types

• The Rust programming language

• How Rust’s type system ensures memory and API safety

• High performance communications software

• Conclusion and further reading

Metaswitch Networks | © 2017 | 2

Common vulnerabilities

Metaswitch Networks | © 2017 | 3

Some recent vulnerabilities in Apache httpd

Metaswitch Networks | © 2017 | 4

Some recent vulnerabilities in Apache httpd

Metaswitch Networks | © 2017 | 5

http://httpd.apache.org/security/vulnerabilities_22.html

…

http://httpd.apache.org/security/vulnerabilities_22.html

CVE-2010-0425 (found by senseofsecurity.com.au)

• CVE: “modules/arch/win32/mod_isapi.c in mod_isapi in the Apache HTTP Server 2.0.37 through 2.0.63,
2.2.0 through 2.2.14, and 2.3.x before 2.3.7, when running on Windows, does not ensure that request
processing is complete before calling isapi_unload for an ISAPI .dll module, which allows remote attackers to
execute arbitrary code via unspecified vectors related to a crafted request, a reset packet, and "orphaned
callback pointers."”

• Initial report: “By sending a specially crafted request followed by a reset packet it is possible to trigger a
vulnerability in Apache mod_isapi that will unload the target ISAPI module from memory. However function
pointers still remain in memory and are called when published ISAPI functions are referenced. This results in
a dangling pointer vulnerability. Successful exploitation results in the execution of arbitrary code with
SYSTEM privileges.”

Metaswitch Networks | © 2017 | 6

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2010-0425
http://www.senseofsecurity.com.au/advisories/SOS-10-002

Dangling pointer vulnerability in Apache httpd (CVE-2010-0425)

• Load a module to handle a request.

• Install a callback to invoke the module.

• Request fails.

• Unload the module.

• Trigger the callback (e.g., by a subsequent request which reloads the module).

• Callback tries to call the module at the old address,

o but instead calls the new contents of that address – which are now part of the second request.

• Request has been carefully crafted to put x86 instructions at that location.

• Attacker’s code is executed.

Metaswitch Networks | © 2017 | 7

The fix

Do not unload an isapi .dll module until the request processing is completed, avoiding orphaned callback pointers.
Submitted by: Brett Gervasoni <brettg senseofsecurity.com>, trawick
Reviewed by: trawick, wrowe

-- httpd/httpd/trunk/modules/arch/win32/mod_isapi.c 2010/03/02 04:18:45 917869
+++ httpd/httpd/trunk/modules/arch/win32/mod_isapi.c 2010/03/02 04:30:33 917870
@@ -1503,7 +1503,6 @@

/* Set up the callbacks */
cid->ecb->ReadClient = ReadClient; … // for example; others omitted for space on slide

/* Set up client input */
res = ap_setup_client_block(r, REQUEST_CHUNKED_ERROR);
if (res) {

- isapi_unload(isa, 0);
return res;

}

@@ -1534,7 +1533,6 @@
}

if (res < 0) {
- isapi_unload(isa, 0);

return HTTP_INTERNAL_SERVER_ERROR;
}

• http://svn.apache.org/viewvc?view=revision&revision=917870
Metaswitch Networks | © 2017 | 8

• Need two rules to fix:

o Once something is freed, it can’t be used
(ownership).

o An object must be valid as long as
any reference to it exists (lifetime).

http://svn.apache.org/viewvc?view=revision&revision=917870

Linear types

Metaswitch Networks | © 2017 | 9

A simple type system

Γ⊢𝑒1:𝑇1 Γ,𝑥:𝑇1⊢𝑒2:𝑇2

Γ⊢let 𝑥= 𝑒1 in 𝑒2:𝑇2
(Let)

Γ,𝑥:𝑇⊢𝑥:𝑇
(Var)

Γ⊢𝑒1:𝑇2→𝑇1 Γ⊢𝑒2:𝑇2

Γ⊢𝑒1𝑒2:𝑇1
(App)

• let x = bake_a_cake();

• eat(x);

• have(x);

• eat(x)

• Syntactic sugar:

o e1;e2
== let _ = e1 in e2

o let x = e1; e2
== let x = e1 in e2

o e1(e2)
== e1 e2

Metaswitch Networks | © 2017 | 10

Fixing the type rules – a linear type system

Γ1⊢𝑒1:𝑇1 Γ2,𝑥:𝑇1⊢𝑒2:𝑇2

Γ1,Γ2 ⊢ let 𝑥= 𝑒1 in 𝑒2:𝑇2
(Let)

𝑥:𝑇 ⊢ 𝑥:𝑇
(Var)

Γ1⊢𝑒1:𝑇2→𝑇1 Γ2⊢𝑒2:𝑇2

Γ1,Γ2 ⊢ 𝑒1𝑒2:𝑇1
(App)

• let x = bake_a_cake(); // 15
eat(x); // 16
have(x); // 17
eat(x) // 18

error[E0382]: use of moved value: `x`

--> src/main.rs:17:10

|

16 | eat(x);

| - value moved here

17 | have(x);

| ^ value used here after move

|

= note: move occurs because `x` has type
`std::string::String`, which does not implement the
`Copy` trait

Metaswitch Networks | © 2017 | 11

Region types

Metaswitch Networks | © 2017 | 12

Two programs (with block scoped allocation)

let f = {let x = (2,3);

if x.0 == 0 {

|y| (0,y)

} else {

|y| (y,y)

}

};

f(5)

• => (5,5)

let f = {let x = (2,3);

|y| (x.0,y)

};

f(5)

• => ERROR! Use of x after free!

Metaswitch Networks | © 2017 | 13

Annotating the program with regions (Tofte & Talpin, 1994)

letregion ρ4,ρ5 in

let f =

letregion ρ6 in

let x = (2 at ρ2, 3 at ρ6) at ρ4;

(|y| (x.0,y) at ρ1) at ρ5

at ρ5;

f(5 at ρ3)

Metaswitch Networks | © 2017 | 14

Regions (lifetimes) in Rust

let f = // 9

{let x = (2,3); // 10

|y| (x.0, y) // 11

}; // 12

f(5) // 13

error[E0597]: `x` does not live long enough

--> src/main.rs:11:23

|

11 | Box::new(|y| (x.0, y))

| --- ^ does not live long enough

| |

| capture occurs here

12 | };

| - borrowed value only lives until here

13 | println!("{:?}", f(5))

14 | }

| - borrowed value needs to live until here

** Compile-time error

Metaswitch Networks | © 2017 | 15

Rust

Metaswitch Networks | © 2017 | 16

The Rust programming language

• A modern programming language (2009), originated and sponsored by Mozilla Labs (makers of Firefox)

• Focus on performance and safety

o “Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.”
– rust-lang.org

o “Rust is a systems language pursuing the trifecta: safe, concurrent, and fast” – This Week in Rust

Metaswitch Networks | © 2017 | 17

https://www.rust-lang.org/en-US/
https://this-week-in-rust.org/blog/2017/11/14/this-week-in-rust-208/

Fast, concurrent, safe

• Fast

o Compiles to native machine code. Competes with C/C++ for raw speed.

o No runtime, no scheduler, no startup.

o No garbage collector – predictable performance.

o Zero-cost abstractions.

• Concurrent

o Multi-threaded or coroutine-based

o Can use multiple cores

o Protection from data races

o Threadsafe toolkit in standard library

• Safe

o Memory safety: no double frees, no NULL pointers, no dangling pointers, no scribblers

o API safety: compile-time API checking, no “unexpected behaviour”

Metaswitch Networks | © 2017 | 18

Other languages:

C/C++:
• Fast: yes
• Concurrent: yes
• Safe: no

Java/Scala:
• Fast: sort-of
• Concurrent: yes
• Safe: sort-of

Ownership in Rust

Metaswitch Networks | © 2017 | 19

Borrowing

Metaswitch Networks | © 2017 | 20

Mutable references

Metaswitch Networks | © 2017 | 21

Borrowing rules in Rust

• Any borrow must last for a scope no greater than that of the owner.

• Each resource may have one or the other of these two kinds of borrows, but not both at the same time:

o One or more references (&T) to a resource.

o Exactly one mutable reference (&mut T) to a resource.

• These rules are sufficient to make data races impossible in Rust!

• Also prevents things like:

o Iterator invalidation (mutating a collection while you’re iterating over it).

o Use after free

Metaswitch Networks | © 2017 | 22

Lifetimes in Rust

• Lending out a reference to a resource owned by someone else:

o I acquire a handle to some kind of resource.

o I lend you a reference to the resource.

o I decide I’m done with the resource, and deallocate it, while you still have your reference.

o You decide to use the resource. BOOM – dangling pointer / use after free!

Metaswitch Networks | © 2017 | 23

Lifetimes

Metaswitch Networks | © 2017 | 24

More lifetimes

Metaswitch Networks | © 2017 | 25

• Inference and elision

In practice

• The type system is picky, but it ensures that Rust code cannot access a dangling pointer, or change a value
under the feet of another caller.

• These guarantees are zero-cost: all the work is done at compile time.

• Learning curve of using a type system:

o “Many new users to Rust experience something we like to call ‘fighting with the borrow checker’, where the Rust
compiler refuses to compile a program that the author thinks is valid. This often happens because the programmer’s
mental model of how ownership should work doesn’t match the actual rules that Rust implements. You probably will
experience similar things at first. There is good news, however: more experienced Rust developers report that once
they work with the rules of the ownership system for a period of time, they fight the borrow checker less and less.”

Metaswitch Networks | © 2017 | 26

More than just pointers

Metaswitch Networks | © 2017 | 27

A dangerous API

Metaswitch Networks | © 2017 | 28

From: A hammer you can only hold by the handle (video, slides)
Andrea Lattuada (ETH Zürich), RustFest 2017

https://youtu.be/3Q2hQfYW-XM
https://speakerdeck.com/utaal/a-hammer-you-can-only-hold-by-the-handle
https://people.inf.ethz.ch/andreal/

Ownership types for API constraints

Metaswitch Networks | © 2017 | 29

High-performance comms software

Metaswitch Networks | © 2017 | 30

Metaswitch Networks

• Cloud-based communications software, powering more than 1,000 worldwide service provider networks.

• Commercial and open-source software solutions.

• Transforming communications networks – migration, virtualization, scale, reliability, manageability.

• Shift to microservices architecture

• Great opportunity to re-select a modern language to use henceforth

o Existing code: C, C++, Java, Scala, Python, Perl

o Productive, but mixed experiences with all of them

o Needed: safety, flexibility, FFI, tooling, ecosystem, and fun!

o Rust ticked all the boxes.

• We’re well along the path, gaining experience, and loving it.

Metaswitch Networks | © 2017 | 31

Conclusion

Metaswitch Networks | © 2017 | 32

Conclusion

• Software engineering has a problem

o Common vulnerabilities

• PL type systems offer a solution

o Linear types and region types

• Rust shows that it works in practice

o Fast, concurrent, safe – pick three

o Easily adopted

o Used in production

Further reading:

• Francois Pottier, A Linear Bestiary

• https://www.rust-lang.org/

• Wikipedia on Rust

• Rust Book (1st ed) bibliography - types

• The Rust Book (1st ed): chapter on ownership

• Metaswitch blog (e.g., 1, 2)

Contact me: Keith.Wansbrough@metaswitch.com

@kw217

Metaswitch Networks | © 2017 | 33

http://pauillac.inria.fr/~fpottier/slides/fpottier-2007-05-linear-bestiary.pdf
https://www.rust-lang.org/
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://doc.rust-lang.org/stable/book/first-edition/bibliography.html#type-system
https://doc.rust-lang.org/stable/book/first-edition/ownership.html
https://www.metaswitch.com/the-switch
https://www.metaswitch.com/the-switch/from-cats-to-crustaceans-the-role-of-microservices-in-autotomizing-nfv
https://www.metaswitch.com/the-switch/metaswitch-swagger-codegen-for-rust-accepted-upstream

Additional slides

Metaswitch Networks | © 2017 | 34

Annotating the program with regions (Tofte & Talpin, 1994)

letregion ρ4,ρ5 in

let f =

letregion ρ6 in

let x = (2 at ρ2, 3 at ρ6) at ρ4;

(|y| (x.0,y) at ρ1) at ρ5

at ρ5;

f(5 at ρ3)

Metaswitch Networks | © 2017 | 35

Annotating the program with regions (Tofte & Talpin, 1994)

letregion ρ4,ρ5 in

let f =

letregion ρ6 in

let x = (2 at ρ2, 3 at ρ6) at ρ4;

(|y| (x.0,y) at ρ1) at ρ5

at ρ5;

f(5 at ρ3)

• Region allocation:

o letregion ρ in e

o e at ρ

Region usage:

• ρ4: x = (2,3) – used during application

• ρ5: |y| (x.0, y) – used during application

• ρ6: 3 – not used: quickly destroyed

• ρ1: (2,5) – result of computation

• ρ2: 2 – part of result

• ρ3: 5 – argument; part of result

𝑓: 𝐼𝑛𝑡
𝑔𝑒𝑡 𝜌

4
(𝐼𝑛𝑡, 𝐼𝑛𝑡)

Metaswitch Networks | © 2017 | 36

Tofte & Talpin’s type rules (selected)

Metaswitch Networks | © 2017 | 37

Regions (lifetimes) in Rust

let f = // 9

{let x = (2,3); // 10

|y| (x.0, y) // 11

}; // 12

f(5) // 13

error[E0597]: `x` does not live long enough

--> src/main.rs:11:23

|

11 | Box::new(|y| (x.0, y))

| --- ^ does not live long enough

| |

| capture occurs here

12 | };

| - borrowed value only lives until here

13 | println!("{:?}", f(5))

14 | }

| - borrowed value needs to live until here

** Compile-time error

Metaswitch Networks | © 2017 | 38

Passing back ownership?

Metaswitch Networks | © 2017 | 39

Ugh! This is why Rust has borrowing.

• Intro

• Common vulnerabilities

• Linear types

• Region types

• Rust intro

• Ownership

• Lifetimes

• Summary

• API safety

• Metaswitch

• Conclusion

Metaswitch Networks | © 2017 | 40

