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Some recent vulnerabilities in Apache httpd
APACHE

HTTP SERVER PROJECT

q

o

Apache httpd 2.2 vulnerabilities

This page lists all security vulnerabilities fixed in released versions of Apache httpd 2.2. Each vulnerability is given a security impact rating by the Apache security team - please note that this rating may we
Apache httpd the flaw is known to affect, and where a flaw has not been verified list the version with a question mark.

Please note that if a vulnerability is shown below as being fixed in a "-dev" release then this means that a fix has been applied to the development source tree and will be part of an upcoming full release.

This page is created from a database of vulnerabilities originally populated by Apache Week. Please send comments or corrections for these vulnerabilities to the Security Team.

Fixed in Apache httpd 2.2.35-dev

low: Use-after-free when using <Limit > with an unrecognized method in .htaccess ("OptionsBleed") (CVE-2017-9798)

When an unrecognized HTTP Method is given in an <Limit {method}> directive in an .htaccess file, and that .htaccess file is processed by the corresponding request, the global methods table is
corrupted in the current worker process, resulting in erratic behaviour.

This behavior may be avoided by listing all unusual HTTP Methods in a global httpd.conf RegisterttipMethod directive in hitpd release 2.2.32 and later.
To permit other htaccess directives while denying the <Limit > directive, see the AllowOverrideList directive.

Source code patch is at;

» hitp:/iwww.apache org/dist/hitpd/patches/apply_to_2.2 34/CVE-2017-9798-patch-2.2 patch

Note 2.2 is end-of-life, no further release with this fix is planned. Users are encouraged to migrate to 2.4.28 or later for this and other fixes.

Acknowledgements: We would like to thank Hanno Béck for reporting this issue.

Reported to security team 12th July 2017
Issue public 18th September 2017

Affects 22342232 2231,2229 2227 2226, 22252224 2223 2222 2221,2220,2219,2218,2217,2216,2215,2214,2213,2212,2211,2210,
229,228,226,225,224,223,222,220

Fixed in Apache httpd 2.2.34

important: Uninitialized memory reflection in mod_auth_digest (CVE-2017-9788)

The value placeholder in [Proxy-]Authorization headers of type 'Digest' was not initialized or reset before or between successive key=value assignments. by mod_auth_digest.

Providing an initial key with no '=' assignment could reflect the stale value of uninitialized pool memory used by the prior request, leading to leakage of potentially confidential information, and a
segfault.

Acknowledgements: We would like to thank Robert Swiecki for reporting this issue.

gi?name=CVE-2017-9798
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http://httpd.apache.org/security/vulnerabilities_22.html

CVE-2010-0425 (found by senseofsecurity.com.au)

* CVE: “modules/arch/win32/mod_isapi.c in mod_isapi in the Apache HTTP Server 2.0.37 through 2.0.63,
2.2.0 through 2.2.14, and 2.3.x before 2.3.7, when running on Windows, does not ensure that request
processing is complete before calling isapi_unload for an ISAPI .dll module, which allows remote attackers to
execute arbitrary code via unspecified vectors related to a crafted request, a reset packet, and "orphaned
callback pointers."”

* |nitial report: “By sending a specially crafted request followed by a reset packet it is possible to trigger a
vulnerability in Apache mod_isapi that will unload the target ISAPI module from memory. However function
pointers still remain in memory and are called when published ISAPI functions are referenced. This results in
a dangling pointer vulnerability. Successful exploitation results in the execution of arbitrary code with
SYSTEM privileges.”

ﬂ‘?\ _f_‘ Common Vulnerabilities and Exposures
\':_; pe The Standard for Information Security Vulnerability Names
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http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2010-0425
http://www.senseofsecurity.com.au/advisories/SOS-10-002

Dangling pointer vulnerability in Apache httpd (CVE-2010-0425)

* Load a module to handle a request.

* Install a callback to invoke the module.

* Request fails.

* Unload the module.

* Trigger the callback (e.g., by a subsequent request which reloads the module).

* Callback tries to call the module at the old address,

but instead calls the new contents of that address — which are now part of the second request.
* Request has been carefully crafted to put x86 instructions at that location.

e Attacker’s code is executed.

metaswitch



The fix

Do not unload an isapi .dll module until the request proces:
Submitted by: Brett Gervasoni <brettg senseofsecurity.com>,
Reviewed by: trawick, wrowe

-- httpd/httpd/trunk/modules/arch/win32/mod_isapi.c 201¢
+++ httpd/httpd/trunk/modules/arch/win32/mod_isapi.c 201¢
@@ -1503,7 +1503,6 @@

/* Set up the callbacks */

* Need two rules to fix:

- Once something is freed, it can’t be used
(ownership).

- An object must be valid as long as
any reference to it exists (lifetime).

cid->ecb->ReadClient = ReadClient; .. //forexample; others

/* Set up client input */
res = ap_setup _client block(r, REQUEST_CHUNKED ERROR);
if (res) {
- isapi_unload(isa, 9);
return res;

}

@@ -1534,7 +1533,6 @@
}

if (res < 0) {
- isapi unload(isa, 90);
return HTTP_INTERNAL_SERVER_ERROR;

ey jor spuce orr sriuc

* http://svn.apache.org/viewvc?view=revision&revision=917870
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Linear types
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A simple type system

F|—81:T1 F;X:T]_ |_82:T2

: (Let)
['HFlet x=eq1n e5:Ty
(Var)
I'x:T+x:T
['Feq:To,->T; T'key: Ty
(App)

F|—€1 €- :Tl

let x = bake _a cake();
eat(x);

have(x);

eat(x)

Syntactic sugar:
. el;e2

== let = el in e2

. let x = el; e2

= Jlet x = el in e2

. el(e2)
== el e2
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Fixing the type rules — a linear type system

- let x = bake a cake();

['1Feq:T ['5,x:T1 ey :T eat(x);
176111 2,% .1 €2:12 (Let) have(x);
Fl,rz Flet x= €1 1N elez eat(x)

error[E@382]: use of moved value: ~x°

(Var) --> src/main.rs:17:10
xX:T Fx:T |
16 | eat(x);
1"1 |_el:T2_)T1 1"2 |_ez :TZ | - value moved here
(App) 17 | have(x);
Fl,rz = elelel | A value used here after move
|

note: move occurs because "x has type
“std::string::String , which does not implement the
“Copy  trait
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Region types
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Two programs (with block scoped allocation)

let £ = {let x = (2,3); let f = {let x = (2,3);
if x.0 == 0 { lyl (x.0,y)
lyl (@,y) }s
} else { f(5)
Iyl (y,y)
}
}s5
f(5)
« =>(5,5) * =>ERROR! Use of x after free!
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Annotating the program with regions (Tofte & Talpin, 1994)

let £ =

let x = (2 , 3 ) ;
(lyl (x.0,y) )

(5 )

metaswitch



Regions (lifetimes) in Rust

let ¥ = error[E@597]: "x  does not live long enough
{let X = (2,3); --> src/main.rs:11:23
|
Iyl (x-8, ¥) 11 | (Iy| (x.e, y))
¥ | --- ~ does not live long enough
f(5) | |
| capture occurs here
12 | }s
| - borrowed value only lives until here
13 | println! ("{:?}", f(5))
14 | }
|

- borrowed value needs to live until here

** Compile-time error

metaswitch






The Rust programming language

* A modern programming language (2009), originated and sponsored by Mozilla Labs (makers of Firefox)

* Focus on performance and safety

o

o

“Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.”

— rust-lang.org

“Rust is a systems language pursuing the trifecta: safe, concurrent, and fast” — This Week in Rust

fn main() {

let greetings

Jo— L=

= ["Hello", "Ciao", "Z Al B IEL",
|!DI_|-§E|_‘I|~.”E|!’ "[IESJ.E", "'Dlé"],‘,

for (num, greeting) in greetings.iter().enumerate() {
print!("{} : ", greeting);
match num {

8

[ I A T Ry W S

>

*

>

' ' W

println! ("This code is editable and runnable!™)},
println!{"Questo codice & modificabile ed eseguibilel™),
println! ("Z @3 — FIIBEL TEiTHEEZS I "),

println! ("®H7|HMH ZEZE =Fotd =TE = USUTH™),
println! ("Ten kod moina edytowac oraz uruchomic!™),
println!("Este cddigo € editdvel e executavel!™),

ih
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https://www.rust-lang.org/en-US/
https://this-week-in-rust.org/blog/2017/11/14/this-week-in-rust-208/

Fast, concurrent, safe

* Fast Other languages:
. Compiles to native machine code. Competes with C/C++ for raw speed.
. C/C++:
- No runtime, no scheduler, no startup.
* Fast: yes
- No garbage collector — predictable performance. « Concurrent: yes

. Zero-cost abstractions. e Safe: no

* Concurrent

Java/Scala:
- Multi-threaded or coroutine-based e Fast: sort-of

- Can use multiple cores * Concurrent: yes
» Safe: sort-of

. Protection from data races

- Threadsafe toolkit in standard library
» Safe
- Memory safety: no double frees, no NULL pointers, no dangling pointers, no scribblers

- APl safety: compile-time API checking, no “unexpected behaviour”
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Ownership in Rust

fn take(v: Vec<i32>) {

fn foo() { | L ]
let v = vec![1, 2, 31; // What happens here 1isn’t important.
}
¥
let v = vec![1l, 2, 3]; let v = vec![1l, 2, 3];
let v2 = v; take(v) ;
println! ("v[0] is: {}", v[0]); println!("v[O0] is: {}", v[O]);
error: use of moved value: “v° error: use of moved value: “v°
println! ("v[0] is: {}", v[0]); println! ("v[0] is: {}", v[0]);
A A
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Borrowing

fn main() {

// This borrows an immutable reference.

fn sum vec(v: &Vec<i32>) -> 1i32 {
v.iter().fold(0, |a, &]| a + b)

}

// Borrow two vectors and sum them.

// This kind of borrowing does not allow mutation through the borrowed reference.

fn foo(vl: &Vec<i32>, v2: &Vec<i32>) —-> 1i32 {
// Do stuff with "vl1° and “v2' .
let s1 = sum_vec(vl);
let s2 = sum_vec(v2);
// Return the answer.
sl + s2

let vl = vec![1l, 2, 3];
let v2 = vec![4, 5, 6];

let answer = foo(&vl, &v2);
println! ("{}", answer);
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Mutable references

let mut x = 53
{ let mut x = 5;

let y = &mut x;
} oxy += 1;
pr
printlnt ("4, x)3

error: cannot borrow 'x° as immutable because it is also borrowed as mutable
println! ("{}", x);
A
note: previous borrow of "x° occurs here; the mutable borrow prevents
subsequent moves, borrows, or modification of 'x until the borrow ends
let y = &mut x;

A

note: previous borrow ends here
fn main() {

e et 620 o metaswitch



Borrowing rules in Rust

* Any borrow must last for a scope no greater than that of the owner.
* Each resource may have one or the other of these two kinds of borrows, but not both at the same time:

- One or more references (&T) to a resource.

Exactly one mutable reference (&mut T) to a resource.

* These rules are sufficient to make data races impossible in Rust!

There is a ‘data race’ when two or more pointers access
the same memory location at the same time, where at
least one of them is writing, and the operations are not
synchronized.

* Also prevents things like:
Iterator invalidation (mutating a collection while you’re iterating over it).

. Use after free
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Lifetimes in Rust

* Lending out a reference to a resource owned by someone else:

i | acquire a handle to some kind of resource.
o | lend you a reference to the resource.
. | decide I’'m done with the resource, and deallocate it, while you still have your reference.

. You decide to use the resource. BOOM — dangling pointer / use after free!

let r;

{
let i = 1;
r = &ij;

}

println! ("{}", r);
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Lifetimes

fn skip_prefix<'a, 'b>(line: &'a str, prefix: &'b str) —> &'a str {

//

let line = "lang:en=Hello World!";
let lang = "en";

let v;

{
let p = format! ("lang:{}=", lang); // —+
v = skip_prefix(line, p.as_str()); // |
} /] —+
println! ("{}", v);
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‘p’

‘p’

comes 1into scope.

goes out of scope.
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More lifetimes

struct Foo<'a> {

x: &'a 132,
¥
fn main() {
let y = &3 // This is the same as 'let _y = 5; let y = & vy; .
let ¥ = Foo { x: vy };
println! ("{}", f.x);
¥
let x: &'static str = "Hello, world.";

 |nference and elision

e et | 6200 25 metaswitch



In practice

* The type system is picky, but it ensures that Rust code cannot access a dangling pointer, or change a value
under the feet of another caller.

* These guarantees are zero-cost: all the work is done at compile time.
* Learning curve of using a type system:

- “Many new users to Rust experience something we like to call ‘fighting with the borrow checker’, where the Rust
compiler refuses to compile a program that the author thinks is valid. This often happens because the programmer’s
mental model of how ownership should work doesn’t match the actual rules that Rust implements. You probably will
experience similar things at first. There is good news, however: more experienced Rust developers report that once
they work with the rules of the ownership system for a period of time, they fight the borrow checker less and less.”
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More than just pointers
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A dangerous API

fn main() {
let rustfest_letter = Letter::new(String::from("Dear RustFest"));
let mut rustfest_envelope = buy_prestamped_envelope();
rustfest_envelope.wrap(&rustfest_letter);

let mut lorry = order_pickup();
lorry.pickup(&rustfest_envelope);
lorry.done();

pub struct Letter {
text: String,

}

pub struct Envelope {
letter: Option<Letter>,

}

pub struct PickuplLorryHandle {
done: bool,
// references to lorry's resources From: A hammer you can only hold by the handle (video, slides)

Andrea Lattuada (ETH Zirich), RustFest 2017
metaswitch



https://youtu.be/3Q2hQfYW-XM
https://speakerdeck.com/utaal/a-hammer-you-can-only-hold-by-the-handle
https://people.inf.ethz.ch/andreal/

Ownership types for APl constraints

pub struct EmptyEnvelope { }

pub struct ClosedEnvelope {
letter: Letter,

¥
impl EmptyEnvelope {
pub fn wrap(self, letter: Letter) -> ClosedEnvelope {
ClosedEnvelope { letter: letter }

}
¥
impl PickuplLorryHandle {
pub fn pickup(&mut self, envelope: ClosedEnvelope) {
/* give letter */

}

pub fn buy_prestamped_envelope() -> EmptyEnvelope { EmptyEnvelope { } }
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High-performance comms software
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Metaswitch Networks

* Cloud-based communications software, powering more than 1,000 worldwide service provider networks.
* Commercial and open-source software solutions.

* Transforming communications networks — migration, virtualization, scale, reliability, manageability.

* Shift to microservices architecture

* Great opportunity to re-select a modern language to use henceforth
. Existing code: C, C++, Java, Scala, Python, Perl
Productive, but mixed experiences with all of them
- Needed: safety, flexibility, FFIl, tooling, ecosystem, and fun!

Rust ticked all the boxes.

* We’'re well along the path, gaining experience, and loving it.
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Conclusion

Further reading:

» Software engineering has a problem * Francois Pottier, A Linear Bestiary
. Common vulnerabilities * https://www.rust-lang.org/

* PL type systems offer a solution * Wikipedia on Rust
. Linear types and region types * Rust Book (1%t ed) bibliography - types

* Rust shows that it works in practice * The Rust Book (15t ed): chapter on ownership
- Fast, concurrent, safe — pick three e Metaswitch blog (e.g., 1, 2)

- Easily adopted

- Used in production

Contact me: Keith.Wansbrough@metaswitch.com
@kw217
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http://pauillac.inria.fr/~fpottier/slides/fpottier-2007-05-linear-bestiary.pdf
https://www.rust-lang.org/
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://doc.rust-lang.org/stable/book/first-edition/bibliography.html#type-system
https://doc.rust-lang.org/stable/book/first-edition/ownership.html
https://www.metaswitch.com/the-switch
https://www.metaswitch.com/the-switch/from-cats-to-crustaceans-the-role-of-microservices-in-autotomizing-nfv
https://www.metaswitch.com/the-switch/metaswitch-swagger-codegen-for-rust-accepted-upstream

Additional slides
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Annotating the program with regions (Tofte & Talpin, 1994)

let £ =

let x = (2 , 3 ) ;
(lyl (x.0,y) )

(5 )
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Annotating the program with regions (Tofte & Talpin, 1994)

Region usage:

let f = * pu:x=1(2,3) —used during application
* ps: |yl (x.0,y) —used during application
let x = (2 , 3 ) ;
(ly|] (x.0,y) ) * Ppe: 3 —not used: quickly destroyed
5
f(5 ) * pq:(2,5) —result of computation

° p,: 2 —partof result
° p3: 5—argument; part of result
* Region allocation:

. letregion p in e get(p,)

. _—
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Tofte & Talpin’s type rules (selected)

TE + {x |—>,c.£1} Fe= ¢ g,
kpgkp T = [ ——}'/f'i fr‘\( )C[‘I"\'(TE )

23
TEF Av.e = Ax.e’ at p:(7,p), {put(p)} (23)
TE e = e (p —=u,p), o1 TE F ey =€ i, o (21)
TEF e s 6 6ty Upa U ea U (e BeUA)) .
TEFe=ceipp  pd&hv(lTE p) (27)

2

TE F ¢ = letregion p in ¢’ end: u, o \ {put(p),get(p)}
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Regions (lifetimes) in Rust

let ¥ = error[E@597]: "x  does not live long enough
{let X = (2,3); --> src/main.rs:11:23
|
Iyl (x-8, ¥) 11 | (Iy| (x.e, y))
¥ | --- ~ does not live long enough
f(5) | |
| capture occurs here
12 | }s
| - borrowed value only lives until here
13 | println! ("{:?}", f(5))
14 | }
|

- borrowed value needs to live until here

** Compile-time error

metaswitch



Passing back ownership?

fn foo(v: Vec<i32>) —-> Vec<i32> {

fn foo(vl: Vec<i32>, v2: Vec<i32>) -> (Vec<i32>, Vec<i32>, 1i32) {
// Do stuff with 'vl1' and “v2°

// Hand back ownership, and the result of our function.
(vi, v2, 42)
let vl = vec![1, 2, 3];

let v2 = vec![1, 2, 3];

let (vl, v2, answer) = foo(vl, v2);

Ugh! This is why Rust has borrowing.
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