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• PhD at School of Informatics.
• Developing compiler techniques for heavily customised embedded hardware.

• Post-doc at Virginia Tech.
• Developing compiler and program mapping techniques for heterogeneous OS.

• Engineer/team-lead at Codeplay.
• Developing compiler and language runtimes for heterogeneous hardware.
• Team-lead for “ComputeAorta”: implementing OpenCL and Vulkan.
• Member of Khronos OpenCL and OpenCL Safety Critical groups.

• Finding new ways to let programmers exploit new hardware.
• Compilers, language-runtimes, language-design.

About me
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• Why worry about heterogeneous programming languages.

• How to push heterogeneous languages higher level.

• Why we also want to push them lower level.

• Where does performance portability fit into this.

Overview
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Codeplay

Based in 
Edinburgh, 
Scotland

66 staff, mostly engineering

License and customize technologies for 
semiconductor companies

Products: ComputeAorta and ComputeCpp -
implementations of OpenCL, Vulkan and SYCL

15+ years of experience in building 
heterogeneous systems tools
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Where Codeplay fits in

Semiconductor 
companies

Software tools and 
platforms: Codeplay

Machine intelligence 
software
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Why heterogeneous languages are important

https://techcrunch.com/2017/01/19/nhtsas-full-final-investigation-into-teslas-autopilot-shows-40-crash-rate-reduction/

http://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/#6e60fc8246e6

https://techcrunch.com/2017/01/19/nhtsas-full-final-investigation-into-teslas-autopilot-shows-40-crash-rate-reduction/
http://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/#6e60fc8246e6
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Why heterogeneous languages are important

https://doi.org/10.1145/3028687.3038873

http://www.nextbigfuture.com/2016/12/chips-for-deep-learning-continue-to.html

https://doi.org/10.1145/3028687.3038873
http://www.nextbigfuture.com/2016/12/chips-for-deep-learning-continue-to.html
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• See:
• https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-

cycle-for-emerging-technologies-2017/

• Many technologies require heterogeneous hardware.
• Deep reinforcement learning.

• Deep learning.

• Machine learning.

• Autonomous vehicles.

• Cognitive computing.

• Blockchain, etc.

Gartner Hype Cycle

https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
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Performance

PortabilityProductivity

Heterogeneous Programming Wishlist
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Performance

PortabilityProductivity

• And …
• Correctness

• Reliability

• Predictability

• Conciseness

• Expressivity

• Scalability

• Tool support

• Ecosystem

• Etc.

Heterogeneous Programming Wishlist
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DSLs

•Domain specific languages or libraries.

• Frequently use graph-based computational models.

High-level

•High-level programmer-orientated programming models.

• Programmer specifies what is to be executed.

Low-level

• Low-level hardware-orientated programming models.

• Programmer has precise control of how everything is executed.

Stacking Heterogeneous Languages
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DSLs

• Domain specific languages or libraries.

• Can be implemented using SYCL.

SYCL

• High-level C++ programming model.

• Builds on top of OpenCL & SPIR.

OpenCL

• Low-level heterogeneous C API.

• Widely supported.

Stacking Open Standards
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Why open standards?

Well Defined Middleware 

Software Application

Hardware & Low-Level Software

Write 
software

Evaluate 
Architecture

Select 
Platform

Develop 
Platform

Write software

Optimize for 
platform

Validate whole 
platform

Evaluate 
Software
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Abstractions: Going up the stack
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• Explicit work execution.

• Explicit memory 
management.

• Hierarchical [single node] 
parallelism model:
• Work-item ≤ sub-group ≤ work-

group ≤ nd-range.

• Kernel memory model.

Low-level Languages (OpenCL)

http://rtcmagazine.com/articles/view/103610
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Problem: Performance portability

• Different hardware requires different approaches.
• Functionally portable, but not performance portable.

• An algorithm optimised for one architecture may perform terribly on another.

• E.g. Tiled matrix multiply.
• GPU: Tile based on local memory size, explicit global to local copy, barriers.

• DSP: Tile based on local memory size, async_work_group_copy.

• CPU: Tile based on cache size, no local memory or barriers, let caches handle it.

• A fundamental property of being a low-level API?
• So lets consider higher-level APIs.
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OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =

“__kernel void vecadd(global int *A,\n”

“                     global int *B,\n”

“                     global int *C) {\n”

“    size_t gid = get_global_id(0);\n”

“    C[gid] = A[gid] + B[gid];\n”

“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);

clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);

clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE},

{32, 1, 1}, 0, NULL, NULL);

auto A = ABuf.get_access<read>(cgh);

auto B = BBuf.get_access<read>(cgh);

auto C = CBuf.get_access<write>(cgh);

cgh.parallel_for<vecadd>(

cl::sycl::range<1>(CBuf.size()),

[=](cl::sycl::id<1> idx) {

C[idx] = A[idx] + B[idx];

});

OpenCL vs SYCL Kernel
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• STL: Algorithms via template 
meta-programming.

• Parallel STL: Parallel 
algorithms via template-
metaprogramming.
• Part of C++17.

Example: Parallel STL on SYCL

std::vector<int> vec = ...;

// Execute the for_each algorithm.

std::parallel::foreach(par,

buf.begin(),

buf.end(),

[=](int& x) {

x += 2;

});
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• Can be implemented in SYCL.
• https://github.com/KhronosGroup/

SyclParallelSTL/

Example: Parallel STL on SYCL
sycl::sycl_execution_policy<> sycl_policy;

std::vector<int> vec = ...;

// Execute the for_each algorithm.

std::parallel::foreach(sycl_policy,

buf.begin(),

buf.end(),

[=](int& x) {

x += 2;

});

https://github.com/KhronosGroup/SyclParallelSTL/
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sycl::sycl_execution_policy<> sycl_policy;

std::vector<int> vec = ...;

cl::sycl::range<1> range(vec.size());

cl::sycl::buffer<int, 1, map_allocator<int>>

buf(vec.data(), range);

// Execute the for_each algorithm.

std::parallel::foreach(sycl_policy,

sycl::helpers::begin(buf),

sycl::helpers::end(buf),

[=](int& x) {

x += 2;

});

• Manually specify a “map 
allocator”.
• Tells the SYCL implementation that 

it can directly use the memory.

• C++17 has contiguous iterator trait.

• Supports the case for DSLs:
• General programming models 

never know exactly what the 
programmer will do.

Parallel STL and Performance Portability
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Parallel STL and Performance Portability
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OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
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OpenCL vs SYCL Kernel
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Separating Storage & Access

Buffer

Accessor CPU

GPUAccessor

Accessors are used to 
describe accessBuffers managed data 

across host CPU and 
one or more devices
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Data Dependency Task Graphs

Buffer B

Buffer C

Buffer D

Buffer A

Kernel B

Kernel C

Kernel A
Read Accessor

Write Accessor

Read Accessor

Write Accessor

Read Accessor

Write Accessor

Read Accessor
Kernel C

Kernel A Kernel B
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• Builds on strengths of OpenCL, such as the optimised per-
architecture implementation.

• Automatic memory management and dependency graph can 
often better utilise the hardware than a programmer can.

• Still requires the programmer to choose how best to map the 
problem to the parallelism model.
• But at least it is comparatively easy to program it.

SYCL and Performance Portability
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• Key feature to enable DSLs: Metaprogramming.
• In SYCL this primarily means C++ templates.

• Codeplay have implemented several DSLs on top of SYCL:
• Tensorflow/Eigen

• C++17 Parallel STL

• VisionCpp

• SYCL BLAS

• SYCL particularly suited to DSLs with graph execution models.
• It’s dependency tracking can create the graph automatically.

• Possibility of implementing optimisations to fuse graph nodes.

Domain Specific Languages and Libraries
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Graph programming: Some Numbers
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OpenCV (nodes) OpenCV (graph) Halide (nodes) Halide (graph) SYCL (nodes) SYCL (graph)

Effect of combining graph nodes on performance

Kernel time (ms) Overhead time (ms)

In this example, we 

perform 3 image 

processing operations 

on an accelerator and 

compare 3 systems 

when executing 

individual nodes, or a 

whole graph

The system is an AMD 

APU and the operations 

are: RGB->HSV, channel 

masking, HSV->RGB
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• Programmers are solving their problems directly in the 
problem domain.

• Systems experts can put their knowledge into the DSL 
implementation.

• I.e., solutions must be implemented at the appropriate level.
• High-level problems get implemented in their own domain.

• DSLs get implemented in a high-level language.

• Hardware-specific optimisations get done in a low-level language.

DSLs and Performance Portability
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Abstractions: Going down the stack
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OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =
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});

OpenCL vs SYCL Kernel
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• Accelerating DSLs and libraries is a key use-case for OpenCL!
• SYCL, Caffe, Halide, OpenVX, OpenCV, ViennaCL, ArrayFire, etc

• However, awkward to compile high-level kernels to OpenCL-C.
• C was intended for programmers to write, not tools to generate.

• Much better to compile a high-level language to IR: SPIR-V
• Primary use case is to abstract away the kernel language.

• SPIR-V is slightly higher level than LLVM IR, has structured control flow.

• “Next 700 heterogeneous languages.”

OpenCL as a Base for Higher-level Languages
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OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
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OpenCL vs SYCL Kernel



© 2017 Codeplay Software Ltd.36

Problem: Mixing work creation with work dispatch

• Affects the efficiency of multi-threaded programs.

• Local work-group sizes set within clEnqueueNDRangeKernel.
• If optimisations are to exploit local work group size, compilation must be 

deferred.
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• Graphics API but with compute capabilities.

• Much lower-level than OpenCL, extremely explicit.
• I.e. as a graphics API it is for engine developers rather than game creators.

• Much like low-level compute APIs could be for language implementers.

• Sacrifices that Vulkan makes for the sake of performance:
• Separate work construction from work execution.

• Elide error handling (replace with validation and debug layers).

• Keep the “fast path” fast (i.e. doing work).

Vulkan
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• Heterogeneous programming languages are becoming:
• Higher level …

• … and lower level.

• Pick the correct level to solve your problem.

• Heterogeneous programming languages can stack.
• Helps to manage programming the wide variety of hardware out there.

• Existence of high-level models free the low-levels to go even lower.

• Performance portability is still a lot of work.

Conclusion
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Thank you!


