
Layering Abstractions

Alastair Murray, Principal Software Engineer, Compilers

November 2nd 2017

Heterogeneous Programming and Performance Portability

© 2017 Codeplay Software Ltd.2

• PhD at School of Informatics.
• Developing compiler techniques for heavily customised embedded hardware.

• Post-doc at Virginia Tech.
• Developing compiler and program mapping techniques for heterogeneous OS.

• Engineer/team-lead at Codeplay.
• Developing compiler and language runtimes for heterogeneous hardware.
• Team-lead for “ComputeAorta”: implementing OpenCL and Vulkan.
• Member of Khronos OpenCL and OpenCL Safety Critical groups.

• Finding new ways to let programmers exploit new hardware.
• Compilers, language-runtimes, language-design.

About me

© 2017 Codeplay Software Ltd.3

• Why worry about heterogeneous programming languages.

• How to push heterogeneous languages higher level.

• Why we also want to push them lower level.

• Where does performance portability fit into this.

Overview

© 2017 Codeplay Software Ltd.4

Codeplay

Based in
Edinburgh,
Scotland

66 staff, mostly engineering

License and customize technologies for
semiconductor companies

Products: ComputeAorta and ComputeCpp -
implementations of OpenCL, Vulkan and SYCL

15+ years of experience in building
heterogeneous systems tools

© 2017 Codeplay Software Ltd.5

Where Codeplay fits in

Semiconductor
companies

Software tools and
platforms: Codeplay

Machine intelligence
software

© 2017 Codeplay Software Ltd.6

Why heterogeneous languages are important

https://techcrunch.com/2017/01/19/nhtsas-full-final-investigation-into-teslas-autopilot-shows-40-crash-rate-reduction/

http://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/#6e60fc8246e6

https://techcrunch.com/2017/01/19/nhtsas-full-final-investigation-into-teslas-autopilot-shows-40-crash-rate-reduction/
http://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/#6e60fc8246e6

© 2017 Codeplay Software Ltd.7

Why heterogeneous languages are important

https://doi.org/10.1145/3028687.3038873

http://www.nextbigfuture.com/2016/12/chips-for-deep-learning-continue-to.html

https://doi.org/10.1145/3028687.3038873
http://www.nextbigfuture.com/2016/12/chips-for-deep-learning-continue-to.html

© 2017 Codeplay Software Ltd.8

• See:
• https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-

cycle-for-emerging-technologies-2017/

• Many technologies require heterogeneous hardware.
• Deep reinforcement learning.

• Deep learning.

• Machine learning.

• Autonomous vehicles.

• Cognitive computing.

• Blockchain, etc.

Gartner Hype Cycle

https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

© 2017 Codeplay Software Ltd.9

Performance

PortabilityProductivity

Heterogeneous Programming Wishlist

© 2017 Codeplay Software Ltd.10

Performance

PortabilityProductivity

• And …
• Correctness

• Reliability

• Predictability

• Conciseness

• Expressivity

• Scalability

• Tool support

• Ecosystem

• Etc.

Heterogeneous Programming Wishlist

© 2017 Codeplay Software Ltd.11

DSLs

•Domain specific languages or libraries.

• Frequently use graph-based computational models.

High-level

•High-level programmer-orientated programming models.

• Programmer specifies what is to be executed.

Low-level

• Low-level hardware-orientated programming models.

• Programmer has precise control of how everything is executed.

Stacking Heterogeneous Languages

© 2017 Codeplay Software Ltd.12

DSLs

•Domain specific languages or libraries.

• Frequently use graph-based computational models.

High-level

•High-level programmer-orientated programming models.

• Programmer specifies what is to be executed.

Low-level

• Low-level hardware-orientated programming models.

• Programmer has precise control of how everything is executed.

Stacking Heterogeneous Languages

© 2017 Codeplay Software Ltd.13

DSLs

•Domain specific languages or libraries.

• Frequently use graph-based computational models.

High-level

•High-level programmer-orientated programming models.

• Programmer specifies what is to be executed.

Low-level

• Low-level hardware-orientated programming models.

• Programmer has precise control of how everything is executed.

Stacking Heterogeneous Languages

© 2017 Codeplay Software Ltd.14

DSLs

• Domain specific languages or libraries.

• Can be implemented using SYCL.

SYCL

• High-level C++ programming model.

• Builds on top of OpenCL & SPIR.

OpenCL

• Low-level heterogeneous C API.

• Widely supported.

Stacking Open Standards

© 2017 Codeplay Software Ltd.15

Why open standards?

Well Defined Middleware

Software Application

Hardware & Low-Level Software

Write
software

Evaluate
Architecture

Select
Platform

Develop
Platform

Write software

Optimize for
platform

Validate whole
platform

Evaluate
Software

© 2017 Codeplay Software Ltd.16

Abstractions: Going up the stack

© 2017 Codeplay Software Ltd.17

• Explicit work execution.

• Explicit memory
management.

• Hierarchical [single node]
parallelism model:
• Work-item ≤ sub-group ≤ work-

group ≤ nd-range.

• Kernel memory model.

Low-level Languages (OpenCL)

http://rtcmagazine.com/articles/view/103610

© 2017 Codeplay Software Ltd.18

Problem: Performance portability

• Different hardware requires different approaches.
• Functionally portable, but not performance portable.

• An algorithm optimised for one architecture may perform terribly on another.

• E.g. Tiled matrix multiply.
• GPU: Tile based on local memory size, explicit global to local copy, barriers.

• DSP: Tile based on local memory size, async_work_group_copy.

• CPU: Tile based on cache size, no local memory or barriers, let caches handle it.

• A fundamental property of being a low-level API?
• So lets consider higher-level APIs.

© 2017 Codeplay Software Ltd.19

OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =

“__kernel void vecadd(global int *A,\n”

“ global int *B,\n”

“ global int *C) {\n”

“ size_t gid = get_global_id(0);\n”

“ C[gid] = A[gid] + B[gid];\n”

“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);

clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);

clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE},

{32, 1, 1}, 0, NULL, NULL);

auto A = ABuf.get_access<read>(cgh);

auto B = BBuf.get_access<read>(cgh);

auto C = CBuf.get_access<write>(cgh);

cgh.parallel_for<vecadd>(

cl::sycl::range<1>(CBuf.size()),

[=](cl::sycl::id<1> idx) {

C[idx] = A[idx] + B[idx];

});

OpenCL vs SYCL Kernel

© 2017 Codeplay Software Ltd.20

OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =

“__kernel void vecadd(global int *A,\n”

“ global int *B,\n”

“ global int *C) {\n”

“ size_t gid = get_global_id(0);\n”

“ C[gid] = A[gid] + B[gid];\n”

“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);

clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);

clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE},

{32, 1, 1}, 0, NULL, NULL);

auto A = ABuf.get_access<read>(cgh);

auto B = BBuf.get_access<read>(cgh);

auto C = CBuf.get_access<write>(cgh);

cgh.parallel_for<vecadd>(

cl::sycl::range<1>(CBuf.size()),

[=](cl::sycl::id<1> idx) {

C[idx] = A[idx] + B[idx];

});

OpenCL vs SYCL Kernel

© 2017 Codeplay Software Ltd.21

• STL: Algorithms via template
meta-programming.

• Parallel STL: Parallel
algorithms via template-
metaprogramming.
• Part of C++17.

Example: Parallel STL on SYCL

std::vector<int> vec = ...;

// Execute the for_each algorithm.

std::parallel::foreach(par,

buf.begin(),

buf.end(),

[=](int& x) {

x += 2;

});

© 2017 Codeplay Software Ltd.22

• Can be implemented in SYCL.
• https://github.com/KhronosGroup/

SyclParallelSTL/

Example: Parallel STL on SYCL
sycl::sycl_execution_policy<> sycl_policy;

std::vector<int> vec = ...;

// Execute the for_each algorithm.

std::parallel::foreach(sycl_policy,

buf.begin(),

buf.end(),

[=](int& x) {

x += 2;

});

https://github.com/KhronosGroup/SyclParallelSTL/

© 2017 Codeplay Software Ltd.23

sycl::sycl_execution_policy<> sycl_policy;

std::vector<int> vec = ...;

cl::sycl::range<1> range(vec.size());

cl::sycl::buffer<int, 1, map_allocator<int>>

buf(vec.data(), range);

// Execute the for_each algorithm.

std::parallel::foreach(sycl_policy,

sycl::helpers::begin(buf),

sycl::helpers::end(buf),

[=](int& x) {

x += 2;

});

• Manually specify a “map
allocator”.
• Tells the SYCL implementation that

it can directly use the memory.

• C++17 has contiguous iterator trait.

• Supports the case for DSLs:
• General programming models

never know exactly what the
programmer will do.

Parallel STL and Performance Portability

© 2017 Codeplay Software Ltd.24

Parallel STL and Performance Portability

© 2017 Codeplay Software Ltd.25

OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =

“__kernel void vecadd(global int *A,\n”

“ global int *B,\n”

“ global int *C) {\n”

“ size_t gid = get_global_id(0);\n”

“ C[gid] = A[gid] + B[gid];\n”

“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);

clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);

clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE},

{32, 1, 1}, 0, NULL, NULL);

auto A = ABuf.get_access<read>(cgh);

auto B = BBuf.get_access<read>(cgh);

auto C = CBuf.get_access<write>(cgh);

cgh.parallel_for<vecadd>(

cl::sycl::range<1>(CBuf.size()),

[=](cl::sycl::id<1> idx) {

C[idx] = A[idx] + B[idx];

});

OpenCL vs SYCL Kernel

© 2017 Codeplay Software Ltd.26

Separating Storage & Access

Buffer

Accessor CPU

GPUAccessor

Accessors are used to
describe accessBuffers managed data

across host CPU and
one or more devices

© 2017 Codeplay Software Ltd.27

Data Dependency Task Graphs

Buffer B

Buffer C

Buffer D

Buffer A

Kernel B

Kernel C

Kernel A
Read Accessor

Write Accessor

Read Accessor

Write Accessor

Read Accessor

Write Accessor

Read Accessor
Kernel C

Kernel A Kernel B

© 2017 Codeplay Software Ltd.28

• Builds on strengths of OpenCL, such as the optimised per-
architecture implementation.

• Automatic memory management and dependency graph can
often better utilise the hardware than a programmer can.

• Still requires the programmer to choose how best to map the
problem to the parallelism model.
• But at least it is comparatively easy to program it.

SYCL and Performance Portability

© 2017 Codeplay Software Ltd.29

• Key feature to enable DSLs: Metaprogramming.
• In SYCL this primarily means C++ templates.

• Codeplay have implemented several DSLs on top of SYCL:
• Tensorflow/Eigen

• C++17 Parallel STL

• VisionCpp

• SYCL BLAS

• SYCL particularly suited to DSLs with graph execution models.
• It’s dependency tracking can create the graph automatically.

• Possibility of implementing optimisations to fuse graph nodes.

Domain Specific Languages and Libraries

© 2017 Codeplay Software Ltd.30

Graph programming: Some Numbers

0

10

20

30

40

50

60

70

80

90

100

OpenCV (nodes) OpenCV (graph) Halide (nodes) Halide (graph) SYCL (nodes) SYCL (graph)

Effect of combining graph nodes on performance

Kernel time (ms) Overhead time (ms)

In this example, we

perform 3 image

processing operations

on an accelerator and

compare 3 systems

when executing

individual nodes, or a

whole graph

The system is an AMD

APU and the operations

are: RGB->HSV, channel

masking, HSV->RGB

© 2017 Codeplay Software Ltd.31

• Programmers are solving their problems directly in the
problem domain.

• Systems experts can put their knowledge into the DSL
implementation.

• I.e., solutions must be implemented at the appropriate level.
• High-level problems get implemented in their own domain.

• DSLs get implemented in a high-level language.

• Hardware-specific optimisations get done in a low-level language.

DSLs and Performance Portability

© 2017 Codeplay Software Ltd.32

Abstractions: Going down the stack

© 2017 Codeplay Software Ltd.33

OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =

“__kernel void vecadd(global int *A,\n”

“ global int *B,\n”

“ global int *C) {\n”

“ size_t gid = get_global_id(0);\n”

“ C[gid] = A[gid] + B[gid];\n”

“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);

clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);

clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE},

{32, 1, 1}, 0, NULL, NULL);

auto A = ABuf.get_access<read>(cgh);

auto B = BBuf.get_access<read>(cgh);

auto C = CBuf.get_access<write>(cgh);

cgh.parallel_for<vecadd>(

cl::sycl::range<1>(CBuf.size()),

[=](cl::sycl::id<1> idx) {

C[idx] = A[idx] + B[idx];

});

OpenCL vs SYCL Kernel

© 2017 Codeplay Software Ltd.34

• Accelerating DSLs and libraries is a key use-case for OpenCL!
• SYCL, Caffe, Halide, OpenVX, OpenCV, ViennaCL, ArrayFire, etc

• However, awkward to compile high-level kernels to OpenCL-C.
• C was intended for programmers to write, not tools to generate.

• Much better to compile a high-level language to IR: SPIR-V
• Primary use case is to abstract away the kernel language.

• SPIR-V is slightly higher level than LLVM IR, has structured control flow.

• “Next 700 heterogeneous languages.”

OpenCL as a Base for Higher-level Languages

© 2017 Codeplay Software Ltd.35

OpenCL (Heavily Abbreviated) SYCL (Abbreviated)
const char *src =

“__kernel void vecadd(global int *A,\n”

“ global int *B,\n”

“ global int *C) {\n”

“ size_t gid = get_global_id(0);\n”

“ C[gid] = A[gid] + B[gid];\n”

“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);

clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);

clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE},

{32, 1, 1}, 0, NULL, NULL);

auto A = ABuf.get_access<read>(cgh);

auto B = BBuf.get_access<read>(cgh);

auto C = CBuf.get_access<write>(cgh);

cgh.parallel_for<vecadd>(

cl::sycl::range<1>(CBuf.size()),

[=](cl::sycl::id<1> idx) {

C[idx] = A[idx] + B[idx];

});

OpenCL vs SYCL Kernel

© 2017 Codeplay Software Ltd.36

Problem: Mixing work creation with work dispatch

• Affects the efficiency of multi-threaded programs.

• Local work-group sizes set within clEnqueueNDRangeKernel.
• If optimisations are to exploit local work group size, compilation must be

deferred.

© 2017 Codeplay Software Ltd.37

• Graphics API but with compute capabilities.

• Much lower-level than OpenCL, extremely explicit.
• I.e. as a graphics API it is for engine developers rather than game creators.

• Much like low-level compute APIs could be for language implementers.

• Sacrifices that Vulkan makes for the sake of performance:
• Separate work construction from work execution.

• Elide error handling (replace with validation and debug layers).

• Keep the “fast path” fast (i.e. doing work).

Vulkan

© 2017 Codeplay Software Ltd.38

• Heterogeneous programming languages are becoming:
• Higher level …

• … and lower level.

• Pick the correct level to solve your problem.

• Heterogeneous programming languages can stack.
• Helps to manage programming the wide variety of hardware out there.

• Existence of high-level models free the low-levels to go even lower.

• Performance portability is still a lot of work.

Conclusion

@codeplaysoft codeplay.cominfo@codeplay.com

Thank you!

