
EPL Exam Review Session

Simon Fowler
University of Edinburgh

April 25, 2018

Today's Session

→ We have the room for an hour – but I’ll be around after
→ I haven’t seen this year’s paper
→ One request: structural induction
→ I have slides working through two further types of questions:

→ “Is this substitution correct?”
→ “Is this system sound?”

→ …but we can go through anything on the board

2

Exam Information

→ Your exam:
→ Time: Friday, 4th May 2018, 14:30 to 16:30
→ Location: Patersons Land - G.21
→ (Be sure to check closer to the time – these sometimes change!)

→ Exam format:
→ Two hours
→ Question 1 is compulsory, then you have a choice between questions 2 and 3.

→ Revision Exercises:
→ Four papers:

→ Mock exam (on EPL course page)
→ 2015/16 exam
→ 2015/16 resit exam
→ 2016/17 exam

→ Tutorial questions
3

15/16 Exam, Question 3(c)

Consider the following BNF grammar:

e ::= 0 | e1 + e2

(i) Define a Scala type called Expr using case classes to represent the above
abstract syntax
(ii) The size of an expression in this grammar is the number of symbols in the
expression (excluding parentheses, if any). Define a Scala function size that
computes the size of an expression.
(iii) The size of an expression in the above grammar is always odd. Sketch a proof
of this by induction on the structure of expressions (explaining the base case and
induction step).

4

15/16 Exam, Question 3(c)

e ::= 0 | e1 + e2
(i) Define a Scala type called Expr using case classes to represent the above abstract
syntax

abs t rac t c l a ss Expr
case ob je c t Zero extends Expr
case c l a ss Plus (e1 : Expr , e2 : Expr) extends Expr

5

15/16 Exam, Question 3(c)

e ::= 0 | e1 + e2
(ii) The size of an expression in this grammar is the number of symbols in the
expression (excluding parentheses, if any). Define a Scala function size that computes
the size of an expression.

def s i z e (e : Expr) : I n t = e match {
case Zero => 1
case Plus (e1 , e2) => s i z e (e1) + s i z e (e2) + 1

}

6

15/16 Exam, Question 3(c)

(iii) The size of an expression in the above grammar is always odd. Sketch a proof of
this by induction on the structure of expressions (explaining the base case and
induction step).

→ Structural induction: assume that a certain property is true of each subterm. Use
this knowledge to prove that each term also satisfies the property.

→ Base case: a constructor without any subterms (the 0 expression)
→ Inductive case: a constructor containing subterms (e1 + e2)

7

15/16 Exam, Question 3(c)

e ::= 0 | e1 + e2

Theorem
Let e be an expression in the above grammar. The size of e is always odd.

Proof.
By structural induction on e.
Case e = 0: size(0) = 1, which is odd, as required.
Case e = e1 + e2:

→ By the induction hypothesis, size(e1) is odd
→ By the induction hypothesis, size(e2) is odd
→ Two odd numbers added together make an even number

→ (can write size(e1) = 2j+ 1 and size(e2) = 2k+ 1)
→ (2j+ 1) + (2k+ 1) = 2(j+ k+ 1)

→ Extra symbol+, so we have 2(j+ k+ 1) + 1, which is odd, as required. 7

15/16 Resit Exam, Question 1(b)

Consider the following substitutions:

→ (λx.x y)[x/y] = λz.z x
→ (λx.λy.(x, y, z))[(y, z)/x] = λx.λy.((y, z), y, z)
→ (λx.x+ ((λy.y) z))[y/z] = λx.x+ ((λy.y) y)
→ (λx.x+ ((λy.y) z))[x/z] = λx.x+ ((λy.y) x)

For each one, explain whether the substitution has been performed correctly or not. If
not, give the correct answer for the right-hand side.

[8 marks]

8

15/16 Resit Exam, Question 1(b)

(λx.x y)[x/y] = λz.z x

This is correct.
→ Substituting x for y naïvely would result in λx.x x. Here, xwould be captured by the

λx binder, changing the meaning of the program.
→ Instead, it is always safe to perform substitution by choosing fresh variables for

the binders, and then performing the substitution:
→ (λz.z y)[x/y] = (λz.z x)

9

15/16 Resit Exam, Question 1(b)

(λx.x y)[x/y] = λz.z x

This is correct.
→ Substituting x for y naïvely would result in λx.x x. Here, xwould be captured by the

λx binder, changing the meaning of the program.
→ Instead, it is always safe to perform substitution by choosing fresh variables for

the binders, and then performing the substitution:
→ (λz.z y)[x/y] = (λz.z x)

9

15/16 Resit Exam, Question 1(b)

(λx.λy.(x, y, z))[(y, z)/x] = λx.λy.((y, z), y, z)

→ This is incorrect.
→ We can only substitute for free variables – the x here was bound.
→ Even if we could: whereas the y in (y, z)was free before the substitution, y has

been captured by the λy afterwards.
→ To correct the substitution, freshen the binders beforehand:

(λa.λb.(a, b, z))[(y, z)/x] = λa.λb.(a, b, z)

10

15/16 Resit Exam, Question 1(b)

(λx.λy.(x, y, z))[(y, z)/x] = λx.λy.((y, z), y, z)

→ This is incorrect.
→ We can only substitute for free variables – the x here was bound.
→ Even if we could: whereas the y in (y, z)was free before the substitution, y has

been captured by the λy afterwards.
→ To correct the substitution, freshen the binders beforehand:

(λa.λb.(a, b, z))[(y, z)/x] = λa.λb.(a, b, z)

10

15/16 Resit Exam, Question 1(b)

(λx.x+ ((λy.y) z))[y/z] = λx.x+ ((λy.y) y)

→ This is correct.
→ z is not in the scope f the λy binder, so y is not captured when it is substituted.

11

15/16 Resit Exam, Question 1(b)

(λx.x+ ((λy.y) z))[y/z] = λx.x+ ((λy.y) y)

→ This is correct.
→ z is not in the scope f the λy binder, so y is not captured when it is substituted.

11

15/16 Resit Exam, Question 1(b)

(λx.x+ ((λy.y) z))[x/z] = λx.x+ ((λy.y) x)

→ This is incorrect.
→ z is in the scope of λx before the substitution, so x is captured by the binder.
→ As ever, this can be solved by freshening the binder before substituting:

(λa.a+ ((λy.y) z)[x/z] = λa.a+ ((λy.y) x)

12

15/16 Resit Paper: 2(d)

“Type soundness is often proved using two properties, called preservation and
progress”. Define the preservation property.

→ Preservation: Typing is preserved under reduction.
→ More formally, if · ⊢ e : τ and e 7→ e′, then · ⊢ e′ : τ .

→ Progress: A well-typed term is either a value, or can take a reduction step
(evaluation doesn’t get “stuck”)
→ More formally, if · ⊢ e : τ , then either e is a value v, or there exists some e′

such that e 7→ e′.
→ Soundness: A system is sound if it satisfies preservation and progress.

These seem to come up a lot – they’re worth knowing!

13

15/16 Resit Paper: 2(d)

“Type soundness is often proved using two properties, called preservation and
progress”. Define the preservation property.

→ Preservation: Typing is preserved under reduction.
→ More formally, if · ⊢ e : τ and e 7→ e′, then · ⊢ e′ : τ .

→ Progress: A well-typed term is either a value, or can take a reduction step
(evaluation doesn’t get “stuck”)
→ More formally, if · ⊢ e : τ , then either e is a value v, or there exists some e′

such that e 7→ e′.
→ Soundness: A system is sound if it satisfies preservation and progress.

These seem to come up a lot – they’re worth knowing!

13

15/16 Resit Paper: 2(e)

Consider the following rules which we might add to handle random number generation
to a language that already has basic arithmetic:

e 7→ e′

e 7→ e′

randInt(e) 7→ randInt(e′)
0 ≤ n < v

randInt(v) 7→ n
v ≤ 0

randInt(v) 7→ 0

Γ ⊢ e : τ

Γ ⊢ e : int

Γ ⊢ randInt(e) : int

Is this system sound? Briefly explain why or why not.

14

15/16 Resit Paper: 2(e)
e 7→ e′

e 7→ e′

randInt(e) 7→ randInt(e′)
0 ≤ n < v

randInt(v) 7→ n
v ≤ 0

randInt(v) 7→ 0

Γ ⊢ e : τ

Γ ⊢ e : int

Γ ⊢ randInt(e) : int

Does the system satisfy preservation? If something reduces, does it have the same
type?
→ Yes: the type is int before and after reduction.

Does the system satisfy progress? Can we always reduce?
→ Yes: if randInt is evaluating a value, then all values accounted for by the last two

rules. If evaluating a subexpression, we can assume it takes a step, and thus
conclude with the first rule.

15

15/16 Resit Paper: 2(e)

e 7→ e′

e 7→ e′

randInt(e) 7→ randInt(e′)
0 ≤ n < v

randInt(v) 7→ n
v ≤ 0

randInt(v) 7→ 0

Γ ⊢ e : τ

Γ ⊢ e : int

Γ ⊢ randInt(e) : int

How would we prove this formally?

→ Preservation: by induction on e 7→ e′.
→ Progress: by induction on · ⊢ e : τ .

16

15/16 Paper: Question 2(c)
e 7→ e′

e1 7→ e′1
e1 ÷ e2 7→ e′1 ÷ e2

e2 7→ e′2
v1 ÷ e2 7→ v1 ÷ e′2

v2 ̸= 0

v1 ÷ v2 7→ fdiv(v1, v2)

Γ ⊢ e : τ

c is a floating-point constant
Γ ⊢ c : float

Γ ⊢ e1 : float Γ ⊢ e2 : float

Γ ⊢ e1 ÷ e2 : float

Is this system sound?

→ No.
→ Preservation holds: if we take a reduction step, we still end up with a float.
→ Progress does not hold: we cannot reduce v1 ÷ 0 since no rules match, yet v1 ÷ 0

is not a value.

17

15/16 Paper: Question 2(c)
e 7→ e′

e1 7→ e′1
e1 ÷ e2 7→ e′1 ÷ e2

e2 7→ e′2
v1 ÷ e2 7→ v1 ÷ e′2

v2 ̸= 0

v1 ÷ v2 7→ fdiv(v1, v2)

Γ ⊢ e : τ

c is a floating-point constant
Γ ⊢ c : float

Γ ⊢ e1 : float Γ ⊢ e2 : float

Γ ⊢ e1 ÷ e2 : float

Is this system sound?

→ No.
→ Preservation holds: if we take a reduction step, we still end up with a float.
→ Progress does not hold: we cannot reduce v1 ÷ 0 since no rules match, yet v1 ÷ 0

is not a value.
17

