Elements of Programming Languages
Tutorial 8: References and laziness

Week 10 (November 21-25, 2016)

Exercises marked x are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Semantics of references

(a) Give explicit small-step rules for evaluating the sequential composition
expression ej;ez. (Remember that it can also be viewed as syntactic
sugar for let z = e; in ey provided =z is a fresh variable unused in
either expression)

(b) Evaluate the following expression to completion:
let r = ref(ref(42)) in !(!(r))
(c) Consider the following expression:
letr =ref(Az. z) inr = (Az. z + 1); (Ir) (true)

Apply small-step evaluation to this expression until it reaches either a
value or an error state.
2. Interaction of references and evaluation order

Consider the following expression e:
let r = ref(42) in (Az.print(z); print(x)) (r :=r + 1;r)

where print is a side-effecting operation that fully evaluates its argument
to a value and then prints it. For each of the following evaluation strategies,
explain informally how e would be evaluated and what the printed output
will be.

(a) call-by-value

(b) call-by-name

(c) call-by-need / lazy evaluation
3. Embedding L. in Scala
Recall the statements of Lwnile:

Stmt s = skip]| $1;82 | 2 :=e|if e then s; else sy | whileedo s

In this exercise, we will show how to embed these statements into Scala,
viewing Lwnie’s variables as references using the Ref [T] type discussed in
class:

class Ref[A] (val x: A) {

private var a = x
def get = a
def set(y: A) = { a =y }

}

Statements in Ly Will correspond to expressions of type unit in Scala, and
variables will correspond to instances of the rRef [T] type. Consider the fol-
lowing interface:

val skip : ()

def seqg(sl: => Unit,s2: => Unit): Unit

def assign[T] (x: Ref[T], e: => T): Unit

def ifthenelse(e: => Boolean, sl: => Unit, s2: => Unit): Unit
def whiledo(e: => Boolean, s: => Unit): Unit

Notice in particular that most arguments are passed by name (that is, their
types are of the form => T).

(a) Implement the above operations.

(b) Why do the statements expressionsin assign, ifthenelse,and whiledo
need to be passed by name? What would happen if they were passed
by value?

(c) (%) We have not considered how to adapt expressions. In Lwnie, @ muta-
ble variable occurring in an expression is evaluated to its value. How
should we adjust such expressions in Lgef?

. (x) Stream programming

Consider the following stream type:

abstract class Stream[+A]
case object Empty extends Stream[Nothing]
case class SCons[+A] (h: A, t: () => Stream[A]) extends Stream[A]

This defines a type of streams, which are similar to lists, but the evaluation of
the tail of a stream is delayed.

Define Scala functions on streams as follows:

(a) const[A]: A => Stream[A] so that const (a) which produces an in-
finite stream of a’s.

(b) take[A]l: (Int,Stream[A]) => List[A] so thattake (n,s) lists the
first n elements from s.

(C) repeat [A]l: (A => A) => A => Stream[A] such that

repeat (a) (f) = Stream(a,f(a),f(f(a)),..)

For example, repeat (0) (incr) should produce the streamo,1,2,3, ...,
if incr is the increment function.

(d) map[Al: Stream[A] => (A => B) => Stream[B] thatapplies the func-
tion £: A => Bto each element of the stream s: Stream[a] yielding a
stream of Bs.

