Elements of Programming Languages Tutorial 3: Recursion and data structures Week 5 (October 17–21, 2016)

Exercises marked \star are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Pairs, variants, and polymorphism in Scala

Scala includes built-in pair types (T1, T2), with pairing written (e1, e2) and projection written e._1, e._2. Likewise, Scala's library includes binary sums Either[T1, T2] with constructors $\texttt{Left}(_)$ and $\texttt{Right}(_)$. Pattern matching can be used to analyze Either[T1, T2]. Using these operations, write Scala functions having the following types, polymorphic in A, B, C:

- (a) (A, B) => (B, A)
- (b) Either[A,B] => Either[B,A]
- (c) $((A,B) \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))$
- (d) $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A,B) \Rightarrow C)$
- (e) (Either[A,B] \Rightarrow C) \Rightarrow (A \Rightarrow C, B \Rightarrow C)
- (f) (A => C, B => C) => (Either[A, B] => C)

2. Typing derivations

Construct typing derivations for the following expressions, or argue why they are not well-formed:

- (a) λx :int + bool.case x of $\{ \text{left}(y) \Rightarrow y == 0 \; ; \; \text{right}(z) \Rightarrow z \}$
- (b) (\star) λx :int \times int.if fst $x == \operatorname{snd} x$ then left(fst x) else right(snd x)

3. Lists

We could add built-in lists to L_{Data} as follows:

$$\begin{array}{lll} e & ::= & \cdots \mid \mathtt{nil} \mid e_1 :: e_2 \mid \mathtt{case_{list}} \ e \ \mathtt{of} \ \{\mathtt{nil} \Rightarrow e_1 \ ; \ x :: y \Rightarrow e_2 \} \\ v & ::= & \cdots \mid \mathtt{nil} \mid v_1 :: v_2 \\ \tau & ::= & \cdots \mid \mathtt{list}[\tau] \end{array}$$

Define L_{List} to be L_{Data} extended with the above constructs.

The typing rule for caselist is:

$$\frac{\Gamma \vdash e : \mathtt{list}[\tau] \quad \Gamma \vdash e_1 : \tau' \quad \Gamma, x : \tau, y : \mathtt{list}[\tau] \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{case}_{\mathtt{list}} \ e \ \mathsf{of} \ \{\mathtt{nil} \Rightarrow e_1 \ ; \ x :: y \Rightarrow e_2\} : \tau'}$$

The basic idea here is: Given a list e, a case_{list} expression does a case analysis. If e evaluates to nil, then we evaluate e_1 . Otherwise, e must evaluate to a non-empty list of the form v :: v', and we bind x to the head element v and y to the tail v', and evaluate e_2 .

- (a) Write appropriate typing rules for nil and ::.
- (b) (*) Write appropriate evaluation rules for the above constructs.

4. (\star) Multiple argument functions and mutual recursion

(a) So far, our function definitions take only one argument. Consider L_{Data} with named functions extended with multi-argument function definitions and applications:

```
e := \cdots \mid \text{let fun } f(x_1 : \tau_1, x_2 : \tau_2) = e_1 \text{ in } e_2 \mid f(e_1, e_2)
```

- i. Write appropriate typing rules for these constructs.
- ii. Show that these constructs can be defined in L_{Data} .
- iii. What about functions of three or more arguments?
- (b) In Lecture 5, we considered a simple form of recursion that just defines one recursive function with one argument. Part 4 of this tutorial showed how to accommodate multiple arguments. But what about mutual recursion?

A simple example is

```
let rec even(x:int) : bool = if x==0 then true else odd(x-1) and odd(x:int) : bool = if x==0 then false else even(x-1) in e
```

Show that we can use pairing and rec to define these mutually recursive functions, by filling in the following template with an expression having type unit \rightarrow ((int \rightarrow bool) \times (int \rightarrow bool)) with the desired behavior:

```
\begin{array}{l} \texttt{let} \; p = \cdots \; \texttt{in} \\ \texttt{let} \; even = \texttt{fst} \; p() \; \texttt{in} \\ \texttt{let} \; odd = \texttt{snd} \; p() \; \texttt{in} \\ e \end{array}
```