Elements of Programming Languages Tutorial 3: Recursion and data structures Week 5 (October 17-21, 2016)

Exercises marked \star are more advanced. Please try all unstarred exercise before the tutorial meeting.

1. Pairs, variants, and polymorphism in Scala

Scala includes built-in pair types ($\mathrm{T} 1, \mathrm{~T} 2$), with pairing written (e1,e2) and projection written e._1, e._2. Likewise, Scala's library includes binary sums Either[T1,T2] with constructors Left (_) and Right (_). Pattern matching can be used to analyze Either [T1, T2]. Using these operations, write Scala functions having the following types, polymorphic in A, B, C :
(a) $(\mathrm{A}, \mathrm{B})=>(\mathrm{B}, \mathrm{A})$
(b) Either $[A, B]$ E> Either $[B, A]$
(c) $((A, B)=>C)=>(A=>(B=>))$
(d) $(A=>(B=>C))=>((A, B)=>C)$
(e) (Either $[A, B]=>C)=>(A=>C, B C$)
(f) (A $=>C, B=>C)=>(E i t h e r[A, B]=>C)$

2. Typing derivations

Construct typing derivations for the following expressions, or argue why they are not well-formed:
(a) λx :int + bool.case x of $\{\operatorname{left}(y) \Rightarrow y==0 ; \operatorname{right}(z) \Rightarrow z\}$
(b) $(\star) \lambda x$:int \times int.if fst $x==\operatorname{snd} x$ then left $($ fst $x)$ else right $(\operatorname{snd} x)$

3. Lists

We could add built-in lists to $L_{\text {Data }}$ as follows:

$$
\begin{aligned}
e & ::=\cdots|\operatorname{nil}| e_{1}:: e_{2} \mid \text { case }_{\text {list }} e \text { of }\left\{\text { nil } \Rightarrow e_{1} ; x:: y \Rightarrow e_{2}\right\} \\
v & ::=\cdots|\operatorname{nil}| v_{1}:: v_{2} \\
\tau & ::=\cdots \mid \operatorname{list}[\tau]
\end{aligned}
$$

Define $L_{\text {List }}$ to be $L_{\text {Data }}$ extended with the above constructs.
The typing rule for case list is:

$$
\frac{\Gamma \vdash e: \operatorname{list}[\tau] \quad \Gamma \vdash e_{1}: \tau^{\prime} \quad \Gamma, x: \tau, y: \text { list }[\tau] \vdash e_{2}: \tau^{\prime}}{\Gamma \vdash \operatorname{case}_{\text {list }} e \text { of }\left\{\mathrm{nil} \Rightarrow e_{1} ; x:: y \Rightarrow e_{2}\right\}: \tau^{\prime}}
$$

The basic idea here is: Given a list e, a case $\mathrm{l}_{\text {list }}$ expression does a case analysis. If e evaluates to nil, then we evaluate e_{1}. Otherwise, e must evaluate to a non-empty list of the form $v:: v^{\prime}$, and we bind x to the head element v and y to the tail v^{\prime}, and evaluate e_{2}.
(a) Write appropriate typing rules for nil and ::.
(b) (\star) Write appropriate evaluation rules for the above constructs.

4. (\star) Multiple argument functions and mutual recursion

(a) So far, our function definitions take only one argument. Consider $L_{\text {Data }}$ with named functions extended with multi-argument function definitions and applications:

$$
e::=\cdots \mid \text { let fun } f\left(x_{1}: \tau_{1}, x_{2}: \tau_{2}\right)=e_{1} \text { in } e_{2} \mid f\left(e_{1}, e_{2}\right)
$$

i. Write appropriate typing rules for these constructs.
ii. Show that these constructs can be defined in $L_{\text {Data }}$.
iii. What about functions of three or more arguments?
(b) In Lecture 5, we considered a simple form of recursion that just defines one recursive function with one argument. Part 4 of this tutorial showed how to accommodate multiple arguments. But what about mutual recursion?
A simple example is

```
let rec even(x:int) : bool = if x== 0 then true else odd(x-1)
and odd(x:int) : bool = if x== 0 then false else even(x-1)
in e
```

Show that we can use pairing and rec to define these mutually recursive functions, by filling in the following template with an expression having type unit $\rightarrow(($ int \rightarrow bool $) \times($ int \rightarrow bool $))$ with the desired behavior:

```
let p=\cdots in
let even = fst p() in
let odd = snd p() in
e
```

