Elements of Programming Languages
Tutorial 3: Recursion and data structures

Week 5 (October 17-21, 2016)

Exercises marked x are more advanced. Please try all unstarred exercises before
the tutorial meeting.
1. Pairs, variants, and polymorphism in Scala
Scala includes built-in pair types (T1, T2), with pairing written (e1,e2) and
projection writtene._1, e._2. Likewise, Scala’s library includes binary sums
Either[T1, T2] with constructors Left (_) and Right (_). Pattern matching
can be used to analyze Either[T1,T2]. Using these operations, write Scala
functions having the following types, polymorphicin a, B, C:
(@) (a,B) => (B,A)
(b) Either[A,B] => Either[B,A]
(¢ ((»,B) =>C) => (A => (B => C))
(d a=> (8 =>0)) => ((aB) =>0)
() (Either[A,B] => C) => (A => C, B => C)
(fy (» =>c, B=>C) => (Either[A,B] => C)

2. Typing derivations

Construct typing derivations for the following expressions, or argue why
they are not well-formed:

(a) Az:int + bool.case x of {left(y) = y == 0; right(z) = z}
(b) (*x) Az:int x int.if fst x == snd = then left(fst =) else right(snd x)
3. Lists
We could add built-in lists to Lp,:, as follows:
e u= -+-|nil|ej i eg | caseyjsr eof {nil =e1; 11y = ez}
n= oo | nil | v oy
T u= ---|list[7]
Define L to be Lpata extended with the above constructs.

The typing rule for case; ;s is:

Fke:list[r] The :7 T,mrylist[r]Fes: 7
Ik casejjsp eof {nil = ey ; xuy=ex}: 7

The basic idea here is: Given a list ¢, a case; ;¢ expression does a case analy-
sis. If e evaluates to nil, then we evaluate e;. Otherwise, e must evaluate to
a non-empty list of the form v :: v/, and we bind « to the head element v and
y to the tail v/, and evaluate e,.

(@)
(b)

Write appropriate typing rules for nil and ::.

(x) Write appropriate evaluation rules for the above constructs.

4. (%) Multiple argument functions and mutual recursion

(a)

(b)

So far, our function definitions take only one argument. Consider Lpata
with named functions extended with multi-argument function defini-
tions and applications:

en=---|let fun f(x1 : 71,22 : T2) = €1 ines | f(ey,e2)

i. Write appropriate typing rules for these constructs.
ii. Show that these constructs can be defined in Lp,¢,.
iii. What about functions of three or more arguments?

In Lecture 5, we considered a simple form of recursion that just defines
one recursive function with one argument. Part 4 of this tutorial showed
how to accommodate multiple arguments. But what about mutual re-
cursion?

A simple example is

let rec even(z:int) : bool = if x == 0 then true else odd(zx — 1)
and odd(x:int) : bool = if x == 0 then false else even(z — 1)
ine

Show that we can use pairing and rec to define these mutually recursive
functions, by filling in the following template with an expression having
type unit — ((int — bool) x (int — bool)) with the desired behavior:

letp=---in

let even = fst p() in
let odd = snd p() in
e

