
Programs Namespaces and Packages Modules and Interfaces

Elements of Programming Languages
Lecture 9: Programs, modules and interfaces

James Cheney

University of Edinburgh

October 25, 2016

Programs Namespaces and Packages Modules and Interfaces

Overview

So far we have covered programming “in the small”

simple functional programming
imperative programming
abstractions: parametric polymorphism and subtyping

Next few lectures: programming “in the large”

Today

“Programs” as collections of definitions
Namespace management — packages
Abstract data types — modules and interfaces

We will mostly work “by example” using Scala —
formalizing modules, interfaces involves a lot of
bureaucracy.

Programs Namespaces and Packages Modules and Interfaces

Programs

What is a program?

In LPoly, a program is an expression; any functions
defined in LPoly are local to the expression

let fun f (x : τ) = e1 in
let fun g(y : τ ′) = e2 in
...
e

Scope management is easier with these simplistic forms,
but isn’t very modular

In particular, we can’t easily split a program up into parts
that do unrelated work.

Programs Namespaces and Packages Modules and Interfaces

Declarations and Programs

Most languages support declarations

Decl 3 d ::= let x = e; | let fun f (y : τ) = e;

| let rec f (y : τ) : τ ′ = e;

| type T = τ ; | deftype T = τ ;

A program is a sequence of declarations. The names x , f ,
T are in scope in the subsequent declarations.

Variation: In some languages (Haskell, Scala), the order
of declarations within a program is unimportant, and
names can be referenced before they are used.
Variation: In some languages, only certain “top-level”
declarations are allowed (e.g. classes/interfaces in Java)

Programs Namespaces and Packages Modules and Interfaces

Entry points

The entry point is the place where execution starts when
the program is run

public static void main(String[] args) {...}

Can be specified in different ways:

Executable: specify a particular function that is called
first (e.g. main in C/C++, Java, Scala)
Scripting: entry point is start of program, expressions or
statements run in order
Web applications: entry points are functions such as
doGet, doPost in Java’s Servlet interface
Reactive: provide callbacks to handle one or more events
(e.g. JavaScript handlers for mouse actions)

Programs Namespaces and Packages Modules and Interfaces

Programming in the large

What is the largest program you’ve written (or
maintained)?

1000 lines — 1 file?
10,000 lines? 10 files?
100,000 lines? 100 files?

Sooner or later, someone is going to want to use the
same name for different things.

If there are n programmers, then there are O(n2) possible
sources of name conflicts.

Namespaces provide a way to compartmentalize names to
avoid ambiguity.

Programs Namespaces and Packages Modules and Interfaces

Example: Packages in Java

// com/widget/round/Widget.java

package com.widget.round

class Widget {...

}

// com/widget/square/Widget.java

package com.widget.square

class Widget { ...

}

We can reuse Widget and disambiguate:
com.widget.square.Widget vs.
com.widget.round.Widget

(Package names track the directory hierarchy in Java.)

Programs Namespaces and Packages Modules and Interfaces

Importing

Given a namespace, we can import it

import com.widget.round.Widget

This brings a single name defined in a namespace into
the current scope

import com.widget.round.*

This brings all names defined in a namespace into the
current scope

In Java, importing can only happen at the top level of a
file, and imported names are always classes or interfaces.

(Scala is more flexible, as we’ll see)

Programs Namespaces and Packages Modules and Interfaces

Code reuse and abstract data types

Another important concern for programming in the large
is code reuse.

We’d like to implement (or reuse) certain key data
structures once and for all, in a modular way

Examples: Lists, stacks, queues, sets, maps, etc.

An abstract data type (ADT) is a type together with
some operations on it

Abstract means the type definition (and operation
implementations) are not visible to the rest of the
program
Only the types of the operations are visible (the
interface)
An ADT also has a specification describing its behavior

Programs Namespaces and Packages Modules and Interfaces

Running example: priority queues in Scala

Using Scala objects, here is an initial priority queue ADT:

object PQueue {

type T = ...

val empty: T

def insert(n: Int,pq: T): T

def remove(pq:T): (Int,T)

}

(Similar to Java class with only static members)

Specification:

A priority queue represents a set of integers.
empty corresponds to the empty set
insert adds to the set
remove removes the least element of the set

Programs Namespaces and Packages Modules and Interfaces

Implementing priority queues

One implementation: sorted lists (others possible)

object ListPQueue {

type T = List[Int]

val empty: T = Nil

def insert(n: Int,pq: T): T = pq match {

case Nil => List(n)

case x::xs =>

if (n < x) {n::pq} else {x::insert(n,xs)}

}

def remove(pq:T) = pq match {

case x::xs => (x,xs) // otherwise error

}

}

Programs Namespaces and Packages Modules and Interfaces

Importing

Like packages, objects provide a form of namespace

object ListPQueue {

...

}

val pq = ListPQueue.insert(1,ListPQueue.empty)

import ListPQueue._

val pq2 = remove(pq)

Importing can be done inside other scopes (unlike Java)

def singleton(x: Int) {

import ListPQueue._

insert(x,empty)

}

Programs Namespaces and Packages Modules and Interfaces

ListPQueue isn’t abstract

If we only use the ListPQueue operations, the
specification is satisfied

However, the ListPQueue.T type allows non-sorted lists

So we can violate the specification by passing remove a
non-sorted list!

remove(List(2,1))

// returns 2, should return 1

This violates the (implicit) invariant that ListPQueue.T is
a sorted list.

So, users of this module need to be more careful to use it
correctly.

Programs Namespaces and Packages Modules and Interfaces

One solution (?)

As in Java, we can make some components private

object ListPQueue {

private type T = List[Int]

private val foo: T = List(1)

}

This stops us from accessing foo

scala> ListPQueue.foo

<console>:20: error: (foo cannot be accessed)

However, T is still visible as List[Int]!

scala> ListPQueue.remove(List(2,1))

res10: (Int, List[Int]) = (2,List(1))

Programs Namespaces and Packages Modules and Interfaces

Interfaces

Another way to hide information about the
implementation of a module is to specify an interface

(This may be familiar from Java already. Haskell type
classes also can act as interfaces.)

We’d like to use an interface PQueue that says there is
some type T with operations:

empty: T

insert: (Int,T) => T

remove: T => (Int,T)

but prevent clients from knowing (or relying on) the
definition of T.

Programs Namespaces and Packages Modules and Interfaces

Traits in Scala

Scala doesn’t exactly have Java-like interfaces, but its
traits can play a similar role.

trait PQueue {

type T = List[Int]

val empty: T

def insert(n: Int, pq: T): T

def remove(pq: T): (Int,T)

}

(We’ll say more about why Scala uses the terms object

and trait instead of module and interface later...)

Programs Namespaces and Packages Modules and Interfaces

Implementing an interface

Already, the trait interface hides information about the
implementations of the operations. But, now we can go
further and hide the definition of T!

trait PQueue {

type T // abstract!

}

Now we can specify that ListPQueue implements PQueue
using the extends keyword:

object ListPQueue extends PQueue {...}

This assertion needs be checked to ensure that all of the
components of PQueue are present and have the right
types!

Programs Namespaces and Packages Modules and Interfaces

Checking a module against an interface

trait PQueue {

type T

val empty: T

def insert(n: Int, pq: T): T

def remove(pq: T): (Int,T)

}

An implementation needs to define T to be some type τ

It needs to provide a value empty: τ

It needs to provide functions insert and remove with the
corresponding types (replacing T with τ)

If any are missing or types don’t match, error.

(Note: this is related to type inference, and there can be
similar complications!)

Programs Namespaces and Packages Modules and Interfaces

Interfaces allow multiple implementations

We can now provide other implementations of PQueue

object ListPQueue extends PQueue {...}

object SetPQueue extends PQueue {...}

Also, in Scala, objects can be passed as values, and
extends implies a subtyping relationship

So, we can write a function that uses any implementation
of PQueue, and run it with different implementations:

def make(m: PQueue) =

m.insert(42,m.insert(17,m.empty))

scala> make(ListPQueue)

Programs Namespaces and Packages Modules and Interfaces

Data abstraction

Even though ListPQueue satisfies the PQueue interface,
its definition of T = List[Int] is still visible

However, T is abstract to clients that use the PQueue

interface

So, we can’t do this:

scala> def bad(m: PQueue) = m.remove(List(2,1))

<console>:18: error: type mismatch;

found : List[Int]

required: m.T

def bad(m: PQueue) = m.remove(List(2,1))

Programs Namespaces and Packages Modules and Interfaces

Implementing multiple interfaces

An interface gives a “view” of a module (possibly hiding
some details).

Modules can also satisfy more than one interface.

trait HasSize {

type T

def size(x: T): Int

}

object ListPQueue extends PQueue with HasSize {

...

def size(pq: T) = pq.length

}

(This is slightly hacky, since it relies on using the same
type name T as PQueue uses. We’ll revisit this later.)

Programs Namespaces and Packages Modules and Interfaces

Representation independence

If we have two implementations of the same interface,
how do we know they are providing “equivalent”
behavior?

Representation independence means that the clients of
the interface can’t distinguish the two implementations
using the operations of the interface

(even if their actual run time behavior is very different)

This is much easier in a strongly typed language because
the abstraction barrier is enforced by type system

In other languages, client code needs to be more careful
to avoid depending on (or violating) intended abstraction
barriers

Programs Namespaces and Packages Modules and Interfaces

Modules and interfaces, in general

Decl 3 d ::= let x = e; | let fun f (x : τ) = e;

| let rec f (x : τ) : τ ′ = e;

| type T = τ ; | deftype T = τ ;

| module M {d1 · · · dn} | import q

| interface S {s1 · · · sn}
Spec 3 s ::= val x : τ ; | type T ; | type T = τ ;

QName 3 q ::= x | M .q | S .q |

This a simplified form of the (influential) Standard ML module
language. (We aren’t going to formalize the details.)
Note: Allows arbitrary nesting of modules, interfaces
Not shown: need to allow qualified names in code also

Programs Namespaces and Packages Modules and Interfaces

Summary

As programs grow in size, we want to:

split programs into components (packages or modules)
use package or module scope and structured names to
refer to components
use interfaces to hide implementation details from other
parts of the program

We’ve given a high-level idea of how these components fit
together, illustrated using Scala

Next time:

Object-oriented constructs (objects, classes)

