Parametric Polymorphism

Elements of Programming Languages

Lecture 8: Polymorphism and type inference

Type inference

James Cheney
University of Edinburgh

October 21, 2016

Parametric Polymorphism

Consider the humble identity function

@ A function that returns its input:

Type inference

def idInt(x: Int) = x
def idString(x: String) = x
def idPair(x: (Int,String)) = x

@ Does the same thing no matter what the type is.

@ But we cannot just write this:

def id(x) = x

(In Scala, every variable needs to have a type.)

Parametric Polymorphism Type inference

Overview

@ This week and next week, we will cover different forms of
abstraction

(]

type definitions, records, datatypes, subtyping
e polymorphism, type inference

e modules, interfaces

e objects, classes

e Today:

e polymorphism and type inference

Parametric Polymorphism Type inference

Another example

@ Consider a pair “swap” operation:

def swapInt(p: (Int,Int)) = (p._2,p._1)
def swapString(p: (String,String)) = (p._2,p._1)
def swapIntString(p: (Int,String)) = (p._2,p._1)

@ Again, the code is the same in both cases; only the types
differ.

@ But we can't write

def swap(p) = (p._2,p._1)

What type should p have?

Parametric Polymorphism Type inference

Another example

@ Consider a higher-order function that calls its argument
twice:

def twiceInt(f: Int => Int) = {x: Int => f(f(x))}
def twiceStr(f: String => String) =
{x: String => £f(£f(x))}

@ Again, the code is the same in both cases; only the types
differ.

@ But we can’t write

def twice(f) = {x => f(fx))}

What types should £ and x have?

Parametric Polymorphism Type inference

Parametric Polymorphism

@ Scala’s type parameters are an example of a phenomenon
called polymorphism (= “many shapes”)

@ More specifically, parametric polymorphism because the
function is parameterized by the type.

e lts behavior cannot “depend on” what type replaces
parameter A.
e The type parameter A is abstract

@ We also sometimes refer to A, B, C etc. as type variables

Parametric Polymorphism Type inference

Type parameters

In Scala, function definitions can have type parameters

def id[A]l(x: A): A = x

This says: given a type A, the function id[A] takes an A and
returns an A.

def swap[A,B](p: (A,B)): (B,A) = (p._2,p._1)

This says: given types A,B, the function swap[A,B] takes a
pair (A,B) and returns a pair (B,A).

def twice[A](f: A => A): A => A = {x:A => f(f(x))}

This says: given a type A, the function twice[A] takes a
function £: A => A and returns a function of type A => A

Parametric Polymorphism Type inference

Polymorphism: More examples

@ Polymorphism is even more useful in combination with
higher-order functions.

@ Recall compose from the lab:

def compose[A,B,C](f: A => B, g: B => C) =
{x:A => g(£(x))}

@ Likewise, the map and filter functions:

def map[A,B](f: A => B, x: List[A]): List[B] = ...
def filter[A]l(f: A => Bool, x: List[A]): List[A] = ...

(though in Scala these are usually defined as methods of
List[A] so the A type parameter and x variable are
implicit)

Parametric Polymorphism Type inference

Formalization

o We add type variables A, B, C, ..., type abstractions,
type applications, and polymorphic types:
e = ---|NA e]e[r]
T = ---|A|VA T

We also use (capture-avoiding) substitution of types for
type variables in expressions and types.

The type VA. 7 is the type of expressions that can have
type 7[7’/A] for any choice of A. (A is bound in 7.)

The expression AA. e introduces a type variable for use in
e. (Thus, A is bound in any type annotations in e.)

The expression €[] instantiates a type abstraction

Define Lpoiy to be the extension of Lp., with these
features

Parametric Polymorphism Type inference

Formalization: Typechecking polymorphic
expressions

lFe:7 A#T

[e:VA 7
[+ e[ro] : 7[10/A]

F=ANA e VA 7

@ Idea: AA. e must typecheck with parameter A not already
used elsewhere in type context

@ e[ro| applies a polymorphic expression to a type. Result
type obtained by substituting for A.

@ The other rules are unchanged

Parametric Polymorphism Type inference

Formalization: Type and type variables

@ Complication: Types now have variables. What is their
scope? When is a type variable in scope in a type?

@ The polymorphic type VA.7 binds A in T.
@ We write A # 7 to say that type variable A is fresh for T:

A+#B A#1m A#n A#1m A#n
A#B A#7'1><’7'2 A#Tl—>7'2
A# 1 A#n A#+B A#rT
AH# 1+ 1 A # VAT A#VB.T
@ A#H X T1, ..., XpTp < AH# 1 ---AF# 71,

@ Alpha-equivalence and type substitution are defined
similarly to expressions.

Parametric Polymorphism Type inference

Formalization: Semantics of polymorphic
expressions

@ To model evaluation, we add type abstraction as a
possible value form:

vi=---|NAe

@ with rules similar to those for A and application:

for ch,|y

(S U«/\A €o

eo[r/A]l | v
e[r] § v

@ In Lpyyy, type information is irrelevant at run time.

NA. e] NA. e

@ (Other languages, including Scala, do retain some run
time type information.)

Parametric Polymorphism

Convenient notation

@ We can augment the syntactic sugar for function
definitions to allow type parameters:

let fun f[A](x: 7) = e in ...
@ This is equivalent to:
let f =NA. Ax: 7. ein ..

@ In either case, a function call can be written as

Fl7](x)

Parametric Polymorphism

Examples, typechecked

X:AF x:A
FAA x:A— A
FAAM:Ax : VAA— A

- swap : VAVB.AXx B — B x A
- swap[int] : VB.int x B — B x int

F swap[int][str] : int X str — str X int

Type inference Parametric Polymorphism Type inference

Examples in Lpgy,

@ Identity function
id = NAXX:A. x
@ Swap
swap = NA.AB.Ax:A x B. (snd x, fst x)
e Twice
twice = NA. A\f:A — AXx:A. f(f(x))
@ For example:
swap[int]|[str](1,”a") § ("a",1)
twice[int](Ax: 2 x x)(2) | 8

Type inference Parametric Polymorphism Type inference

Lists and parameterized types

In Scala (and other languages such as Haskell and ML),
type abbreviations and definitions can be parameterized.

List[_] is an example: given a type T, it constructs
another type List[T]

deftype List[A] = [Nil : unit; Cons : A x List[A]]

Such types are sometimes called type constructors

(See tutorial questions on lists)

We will revisit parameterized types when we cover
modules

Parametric Polymorphism Type inference

Other forms of polymorphism

@ Polymorphism refers to several related techniques for
“code reuse” or “overloading”

e Subtype polymorphism: reuse based on inclusion
relations between types.

e Parametric polymorphism: abstraction over type
parameters

e Ad hoc polymorphism: Reuse of same name for multiple
(potentially type-dependent) implementations (e.g.
overloading + for addition on different numeric types,
string concatenation etc.)

@ These have some overlap

@ We will discuss overloading, subtyping and polymorphism
(and their interaction) in future lectures.

Parametric Polymorphism Type inference

Hindley-Milner type inference

A very influential approach was developed independently
by J. Roger Hindley (in logic) and Robin Milner (in CS).

Idea: Typecheck an expression symbolically, collecting
“constraints” on the unknown type variables

@ If the constraints have a common solution then this
solution is a most general way to type the expression
e Constraints can be solved using unification, an equation
solving technique from automated reasoning/logic
programming

@ If not, then the expression has a type error

Parametric Polymorphism Type inference

Type inference

@ As seen in even small examples, specifying the type
parameters of polymorphic functions quickly becomes
tiresome

swap[int][str] map[int][str]

@ Idea: Can we have the benefits of (polymorphic) typing,
without the costs? (or at least: with fewer annotations)

@ Type inference: Given a program without full type
information (or with some missing), infer type
annotations so that the program can be typechecked.

Parametric Polymorphism Type inference

Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
F Ax: A(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x,fst x) : Ay

@ A pair constructs a pair type: hence A; = A, X Az where
x:AF snd x: Ay and x:AF fst x: A3

@ This can only be the case if x : A3 X Ay, i.e. A= A3 X As.

@ Solving the constraints: A= A3 x Ay, A; = A, X Az and
SOB:A2XA3—>A3XA2

Parametric Polymorphism

Let-bound polymorphism [Non-examinable]

@ An important additional idea was introduced in the ML
programming language, to avoid the need to explicitly
introduce type variables and apply polymorphic functions
to type arguments

@ When a function is defined using let fun (or let rec),
first infer a type:

SWBPZAQXA:J,—)A?,XAQ
@ Then abstract over all of its free type parameters.

swap : VAVBAx B —- B x A

e Finally, when a polymorphic function is applied, infer the
missing types.

" o_n

swap(l,"a") ~ swap[int][str](1,"a")

Parametric Polymorphism

Type inference in Scala

@ Scala does not employ full HM type inference, but uses
many of the same ideas.

@ Type information in Scala flows from function arguments
to their results

def f[A](x: List[A]): List[(A,A)] = ...
f(List(1,2,3)) // A must be Int, don’t need f[Int]

@ and sequentially through statement blocks

var 1
var y

List(1,2,3); // l: List[Int] inferred
£f(1); // y : List[(Int,Int)] inferred

Type inference Parametric Polymorphism

Type inference

Parametric Polymorphism

Type inference

ML-style inference: strengths and weaknesses

@ Strengths

e Elegant and effective
e Requires no type annotations at all

@ Weaknesses

e Can be difficult to explain errors

e In theory, can have exponential time complexity (in
practice, it runs efficiently on real programs)

e Very sensitive to extension: subtyping and other
extensions to the type system tend to require giving up
some nice properties

@ (We are intentionally leaving out a lot of technical detail
— HM type inference is covered in more detail in ITCS.)

Type inference

Type inference in Scala

@ Type information does not flow across arguments in the
same argument list

def map[A](f: A => B, 1: List[A]): List[B] = ...
scala> map({x: Int => x + 1}, List(1,2,3))

resO: List[Int] = List(2, 3, 4)

scala> map({x => x + 1}, List(1,2,3))
<console>:25: error: missing parameter type

@ But it can flow from earlier argument lists to later ones:

def map2[A](1: List[A])(f: A => B): List[B] = ...
scala> map2(List(1,2,3)) {x => x + 1}
resl: List[Int] = List(2, 3, 4)

Parametric Polymorphism Type inference

Type inference in Scala: strengths and limitations

@ Compared to Java, many fewer annotations needed

@ Compared to ML, Haskell, etc. many more annotations
needed

@ The reason has to do with Scala's integration of
polymorphism and subtyping

e needed for integration with Java-style object/class
system

e Combining subtyping and polymorphism is tricky (type
inference can easily become undecidable)

e Scala chooses to avoid global constraint-solving and
instead propagate type information locally

Parametric Polymorphism Type inference

Summary

@ Today we covered:
e The idea of thinking of the same code as having many
different types
e Parametric polymorphism: makes the type parameter
explicit and abstract
o Brief coverage of type inference.
@ Next time:

e Programs, modules, and interfaces

