Elements of Programming Languages

Lecture 7：Records，variants，and subtyping

James Cheney
University of Edinburgh

October 18， 2016
－Last time：
－Simple data structures：pairing（product types），choice （sum types）
－Today：
－Records（generalizing products），variants（generalizing sums）and pattern matching
－Subtyping

Records

－Records generalize pairs to n－tuples with named fields．

$$
\begin{aligned}
e & ::=\cdots\left|\left\langle I_{1}=e_{1}, \ldots, I_{n}=e_{n}\right\rangle\right| e . l \\
v & ::=\cdots \mid\left\langle I_{1}=v_{1}, \ldots, I_{n}=v_{n}\right\rangle \\
\tau & ::=\cdots \mid\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}\right\rangle
\end{aligned}
$$

－Examples：

$$
\begin{aligned}
& \langle f s t=1, \text { snd }=\text { "forty-two" }\rangle . s n d \mapsto \text { "forty-two" } \\
& \langle x=3.0, y=4.0, \text { length=5.0 }\rangle
\end{aligned}
$$

－Record fields can be（first－class）functions too：

$$
\langle x=3.0, y=4.0, \text { length }=\lambda(x, y) . \operatorname{sqrt}(x * x+y * y)\rangle
$$

Named variants

－As mentioned earlier，named variants generalize binary variants just as records generalize pairs

$$
\begin{aligned}
e & ::=\cdots\left|C_{i}(e)\right| \text { case } e \text { of }\left\{C_{1}(x) \Rightarrow e_{1} ; \ldots\right\} \\
v & ::=\cdots \mid C_{i}(v) \\
\tau & ::=\cdots \mid\left[C_{1}: \tau_{1}, \ldots, C_{n}: \tau_{n}\right]
\end{aligned}
$$

－Basic idea：allow a choice of n cases，each with a name
－To construct a named variant，use the constructor name on a value of the appropriate type，e．g．$C_{i}\left(e_{i}\right)$ where $e_{i}: \tau_{i}$
－The case construct generalizes to named variants also

Named variants in Scala: case classes

Aside: Records and Variants in Haskell

- We have already seen (and used) Scala's case class mechanism

```
abstract class IntList
case class Nil() extends IntList
case class Cons(head: Int, tail: IntList)
    extends IntList
```

- Note: IntList, Nil, Cons are newly defined types, different from any others.
- Case classes support pattern matching

```
def foo(x: IntList) = x match {
    case Nil() => ...
    case Cons(head,tail) => ...
}
```

- In Haskell, data defines a recursive, named variant type data IntList $=$ Nil Int | Cons Int IntList
- and cases can define named fields:
data Point = Point \{x :: Double, y :: Double\}
- In both cases the newly defined type is different from any other type seen so far, and the named constructor(s) can be used in pattern matching
- This approach dates to the ML programming language (Milner et al.) and earlier designs such as HOPE (Burstall et al.).
- (Both developed in Edinburgh)

Pattern matching

- Datatypes and case classes support pattern matching
- We have seen a simple form of pattern matching for sum types.
- This generalizes to named variants
- But still is very limited: we only consider one "level" at a time
- Patterns typically also include constants and pairs/records
x match \{ case (1, (true, "abcd")) => ...\}
- Patterns in Scala, Haskell, ML can also be nested: that is, they can match more than one constructor
x match $\{$ case $\operatorname{Cons}(1, \operatorname{Cons}(\mathrm{y}, \mathrm{Nil}(\mathrm{)}))=>\ldots$...\}

Records, Variants, and Pattern Matching

More pattern matching

- Variables cannot be repeated, instead, explicit equality tests need to be used.
- The special pattern _ matches anything
- Patterns can overlap, and usually they are tried in order

```
result match {
    case OK => println("All_isuwell")
    case _ => println("Release\sqcupthe\sqcuphounds!")
}
// not the same as
result match {
    case _ => println("Release
    case OK => println("All_is\llcornerwell")
}
```


Expanding nested pattern matching

Type abbreviations

- Nested pattern matching can be expanded out:

```
l match {
    case Cons(x,Cons(y,Nil())) => ...
}
```

expands to

```
1 match \{
    case Cons \((\mathrm{x}, \mathrm{t} 1)\) => t1 match \{
        case Cons \((y, t 2)=>\) t2 match \{
            case Nil() => ...
\} \} \}
```

- Obviously, it quickly becomes painful to write " $\langle x$: int, y : str \rangle " over and over.
- Type abbreviations introduce a name for a type.

$$
\text { type } T=\tau
$$

An abbreviation name T treated the same as its expansion τ

- (much like let-bound variables)
- Examples:

```
type Point \(=\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle\)
```

type Point $=\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle$
type Point $3 d=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, z: \mathrm{dbl}\rangle$
type Point $3 d=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, z: \mathrm{dbl}\rangle$
type Color $=\langle r$:int, g :int, $b:$ int \rangle
type Color $=\langle r$:int, g :int, $b:$ int \rangle
type ColoredPoint $=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, c:$ Color \rangle

```
type ColoredPoint \(=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, c:\) Color \(\rangle\)
```

Type abbreviations and definitions

Type definitions vs. abbreviations in practice

- Instead, can also consider defining new (named) types

$$
\text { deftype } T=\tau
$$

- The term generative is sometimes used to refer to definitions that create a new entity rather than introducing an abbreviation
- Type abbreviations are usually not allowed to be recursive; type definitions can be.

$$
\text { deftype IntList }=[\text { Nil : unit, Cons : int } \times \text { IntList }]
$$

- In Haskell, type abbreviations are introduced by type, while new types can be defined by data or newtype declarations.
- In Java, there is no explicit notation for type abbreviations; the only way to define a new type is to define a class or interface
- In Scala, type abbreviations are introduced by type, while the class, object and trait constructs define new types
- Suppose we have a function:

$$
\text { dist }=\lambda p: \text { Point. sqrt }\left((p \cdot x)^{2}+(p \cdot y)^{2}\right)
$$

for computing the distance to the origin.

- Only the x and y fields are needed for this, so we'd like to be able to use this on ColoredPoints also.
- But, this doesn't typecheck:

$$
\operatorname{dist}(\langle x=8.0, y=12.0, c=\text { purple }\rangle)=13.0
$$

- We can introduce a subtyping relationship between Point and ColoredPoint to allow for this.
- Liskov proposed a guideline for subtyping:

Liskov Substitution Principle

If S is a subtype of T, then objects of type T may be replaced with objects of type S without altering any of the desirable properties of the program.

- If we use $\tau<: \tau^{\prime}$ to mean " τ is a subtype of $\tau^{\prime \prime}$ ", and consider well-typedness to be desirable, then we can translate this to the following subsumption rule:

$$
\frac{\Gamma \vdash e: \tau_{1} \quad \tau_{1}<: \tau_{2}}{\Gamma \vdash e: \tau_{2}}
$$

- This says: if e has type τ_{1} and $\tau_{1}<: \tau_{2}$, then we can proceed by pretending it has type τ_{2}.

Record subtyping: width and depth

- There are several different ways to define subtyping for records.
- Width subtyping: subtype has same fields as supertype (with identical types), and may have additional fields at the end:
$\overline{\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}, \ldots, I_{n+k}: \tau_{n+k}\right\rangle<:\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}\right\rangle}$
- Depth subtyping: subtype's fields are pointwise
subtypes of supertype

$$
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \cdots \quad \tau_{n}<: \tau_{n}^{\prime}}{\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}\right\rangle<:\left\langle I_{1}: \tau_{1}^{\prime}, \ldots, I_{n}: \tau_{n}^{\prime}\right\rangle}
$$

- These rules can be combined. Optionally, field reordering can also be allowed (but is harder to implement).
- (We'll abbreviate $P=$ Point, $P 3=$ Point3d, $C P=$ ColoredPoint to save space...)
- So we have:

$$
\begin{aligned}
& P 3 d=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, z: \mathrm{dbl}\rangle<:\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle=P \\
& C P=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, \mathrm{c}: \text { Color }\rangle<:\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle=P
\end{aligned}
$$

but no other subtyping relationships hold

- So, we can call dist on Point3d or ColoredPoint:
$\frac{x: P 3 d \vdash x: P 3 d \quad P 3 d<: P}{x: P 3 d \vdash x: P} \frac{:}{x: P 3 d \vdash \operatorname{dist}: P \rightarrow \mathrm{dbl}}$
So we have:

Examples

Subtyping for pairs and variants

- For pairs, subtyping is componentwise

$$
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \times \tau_{2}<: \tau_{1}^{\prime} \times \tau_{2}^{\prime}}
$$

- Similarly for binary variants

$$
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1}+\tau_{2}<: \tau_{1}^{\prime}+\tau_{2}^{\prime}}
$$

- For named variants, can have additional subtyping rules (but this is rare)

Subtyping for functions

- When is $A_{1} \rightarrow B_{1}<: A_{2} \rightarrow B_{2}$?
- Maybe componentwise, like pairs?

$$
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}
$$

- But then we can do this (where $\Gamma(p)=P)$:

$$
\frac{\Gamma \vdash \lambda x \cdot x: C P \rightarrow C P \quad \frac{C P<: P \quad C P<: C P}{C P \rightarrow C P<: P \rightarrow C P}}{\Gamma \vdash \lambda x \cdot x: P \rightarrow C P} \quad \Gamma \vdash p: P
$$

- So, once ColoredPoint is a subtype of Point, we can change any Point to a ColoredPoint also. That doesn't seem right.

Covariant vs. contravariant

- For the result type of a function (and for pairs and other data structures), the direction of subtyping is preserved:

$$
\frac{\tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1} \rightarrow \tau_{2}^{\prime}}
$$

- Subtyping of function results, pairs, etc., where order is preserved, is covariant.
- For the argument type of a function, the direction of subtyping is flipped:

$$
\frac{\tau_{1}^{\prime}<: \tau_{1}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}}
$$

- Subtyping of function arguments, where order is reversed, is called contravariant.
- any: a type that is a supertype of all types.
- Such a type describes the common interface of all its subtypes (e.g. hashing, equality in Java)
- In Scala, this is called Any
- empty: a type that is a subtype of all types.
- Usually, such a type is considered to be empty: there cannot actually be any values of this type.
- We've actually encountered this before, as the degenerate case of a choice type where there are zero chioces
- In Scala, this type is called Nothing. So for any Scala type τ we have Nothing $<: \tau<$: Any.

Summary: Subtyping rules

Structural vs. Nominal subtyping

$\tau_{1}<: \tau_{2}$

$$
\begin{gathered}
\overline{\mathrm{empty}<: \tau} \quad \overline{\tau<: \mathrm{any}} \\
\frac{\tau<: \tau}{} \quad \frac{\tau_{1}<: \tau_{2} \quad \tau_{2}<: \tau_{3}}{\tau_{1}<: \tau_{3}} \\
\frac{\tau_{1}<: \tau_{1}^{\prime}}{\tau_{1} \times \tau_{2}<: \tau_{1}^{\prime} \times \tau_{2}^{\prime}} \\
\frac{\tau_{1}<: \tau_{1}^{\prime}}{\tau_{1}+\tau_{2}<: \tau_{1}^{\prime}+\tau_{2}^{\prime}} \\
\frac{\tau_{1}^{\prime}<: \tau_{1}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}} \\
\tau_{2}<: \tau_{2}^{\prime} \\
\hline
\end{gathered}
$$

Notice that we combine the covariant and contravariant rules for functions into a single rule.

- The approach to subtyping considered so far is called structural.
- The names we use for type abbreviations don't matter, only their structure. For example, Point3d $<$: Point because Point3d has all of the fields of Point (and more).
- Then $\operatorname{dist}(p)$ also runs on $p:$ Point3d (and gives a nonsense answer!)
- So far, a defined type has no subtypes (other than itself).
- By default, definitions ColoredPoint, Point and Point3d are unrelated.

Structural vs. Nominal subtyping

- If we defined new types Point ${ }^{\prime}$ and Point $3 d^{\prime}$, rather than treating them as abbreviations, then we have more control over subtyping
- Then we can declare ColoredPoint' to be a subtype of Point'
deftype Point $=\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle$
deftype ColoredPoint ${ }^{\prime}<$ Point ${ }^{\prime}=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, \mathrm{c}$:Color \rangle
- However, we could choose not to assert Point3d' to be a subtype of Point ${ }^{\prime}$, preventing (mis)use of subtyping to view Point3d's as Point's.
- This nominal subtyping is used in Java and Scala
- A defined type can only be a subtype of another if it is declared as such
- More on this later!

