Variables and Substitution	Scope and Binding	Types and evaluation	Variables and Substitution	Scope and Binding	Types and evaluation
			Variables		
	of Programming Lang : Variables, scope, and substit		• Often writte	a symbol that can 'stand for' n <i>x</i> , <i>y</i> , <i>z</i> , L _{lf} with variables:	a value.
	James Cheney			$n\in \mathbb{N}\mid e_1+e_2\mid e_1 imes e_2\ b\in \mathbb{B}\mid e_1==e_2\mid$ if e then	e_1 else e_2
	University of Edinburgh		•	$x \in Var$	
	October 4, 2016			orthand for an arbitrary varial sion variables	ble in <i>Var</i> , the
			 Let's call this 	s language L _{Var}	
		■▶ < ■▶ < ■▶ = -のへで			(권) ▲ 글 ▶ ▲ 글 ▶ =

Types and evaluation

Variables and Substitution Scope and Binding Variables and Substitution Aside: Operators, operators everywhere Substitution

• We have now considered several *binary operators*

$$+ \hspace{0.1 cm} \times \hspace{0.1 cm} \wedge \hspace{0.1 cm} \vee \hspace{0.1 cm} \approx$$

- as well as a unary one (\neg)
- It is tiresome to write their syntax, evaluation rules, and typing rules explicitly, every time we add to the language
- We will sometimes represent such operations using *schematic* syntax $e_1 \oplus e_2$ and rules:

$$\frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{e_1 \oplus e_2 \Downarrow v_1 \oplus_{\mathbb{A}} v_2} \qquad \frac{\vdash e_1 : \tau' \quad \vdash e_2 : \tau' \quad \oplus : \tau' \times \tau' \to \tau}{\vdash e_1 \oplus e_2 : \tau}$$

- where \oplus : $\tau' \times \tau' \rightarrow \tau$ means that operator \oplus takes arguments τ', τ' and yields result of type τ
- (e.g. +: int × int → int, == : $\tau \times \tau \to \text{bool}$)) 国 の Q (や)

- We said "A variable can 'stand for' a value."
- What does this mean precisely?
- Suppose we have x + 1 and we want x to "stand for" 42.

Scope and Binding

• We should be able to *replace* x everywhere in x + 1 with 42:

$$x + 1 \rightsquigarrow 42 + 1$$

• Similarly, if x "stands for" 3 then

if x == y then x else $y \rightsquigarrow$ if 3 == y then 3 else y

Types and evaluation

Variables and Substitution	Scope and Binding	Types and evaluation	Variables and Substitution	Scope and Binding	Types and evaluation
Substitution			Scope		
Definition (Substit Given e, x, v , the s written $e[v/x]$. • For L_{Var} , defin	substitution of v for x in the substitution as follow $v_0[v/x] = v$ x[v/x] = v y[v/x] = y $(e_1 \oplus e_2)[v/x] = e$ e_1 else $e_2)[v/x] = i$	<i>n e</i> is an expression s: $(x \neq y)$ $_{1}[v/x] \oplus e_{2}[v/x]$	 As we all kn names: def f def t The occurrent those in bar Moreover thalready in undef f 	ne following code is equivalent (s se in foo or bar): foo(x: Int) = x + 1 par(y: Int) = y * y	o do with
Variables and Substitution	Scope and Binding	Types and evaluation	Variables and Substitution	Scope and Binding	Types and evaluation
Scope			Scope, Binding	and Bound Variables	

Scope, Binding and Bound Variables

- Certain occurrences of variables are called *binding*
- Again, consider

```
def foo(x: Int) = x + 1
def bar(y: Int) = y * y
```

- The occurrences of x and y on the left-hand side of the definitions are *binding*
- Binding occurrences define scopes: the occurrences of x and y on the right-hand side are *bound*
- Any variables not in scope of a binder are called *free*
- Key idea: Renaming all binding and bound occurrences in a scope *consistently* (avoiding name clashes) should not affect meaning

Definition (Scope)

The *scope* of a variable name is the collection of program locations in which occurrences of the variable refer to the same thing.

- I am being a little casual here: "refer to the same thing" doesn't necessarily mean that the two variable occurrences evaluate to the same value at run time.
- For example, the variables could refer to a shared *reference cell* whose value changes over time.

Scope and Binding

Types and evaluation

Dynamic vs. static scope

Simple scope: let-binding

- The terms *static* and *dynamic* scope are sometimes used.
- In static scope, the scope and binding occurrences of all variables can be determined from the program text, without actually running the program.
- In dynamic scope, this is not necessarily the case: the scope of a variable can depend on the context in which it is evaluated at run time.
- We will have more to say about this later when we cover functions
 - but for now, the short version is: Static scope good, dynamic scope bad.

• For now, we consider a very basic form of scope: let-binding.

 $e ::= \cdots | x |$ let $x = e_1$ in e_2

- We define L_{Let} to be L_{If} extended with variables and let.
- In an expression of the form let $x = e_1$ in e_2 , we say that x is bound in e_2
- Intuition: let-binding allows us to use a variable x as an abbreviation for some other expression:

let
$$x = 1 + 2$$
 in $3 \times x \rightsquigarrow 3 \times (1 + 2)$

- We wish to consider expressions *equivalent* if they have the same binding structure
- We can *rename* bound names to get equivalent expressions:

let x = y + z in $x == w \equiv \text{let } u = y + z$ in u == w

• But some renamings change the binding structure:

let x = y + z in $x == w \not\equiv \text{let } w = y + z$ in w == w

- Intuition: Renaming to u is fine, because u is not already "in use".
- But renaming to w changes the binding structure, since w was already "in use".

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- We say that a variable x is *fresh* for an expression e if there are no free occurrences of x in e.
- We can define this using rules as follows:

$$\frac{x \# e}{x \# v} = \frac{x \neq y}{x \# y} \frac{x \# e_1 x \# e_2}{x \# e_1 \oplus e_2} \frac{x \# e x \# e_1 x \# e_2}{x \# \text{ if } e \text{ then } e_1 \text{ else } e_2}$$

$$\frac{x \# e_1}{x \# \text{ let } x = e_1 \text{ in } e_2} \frac{x \neq y x \# e_1 x \# e_2}{x \# \text{ let } y = e_1 \text{ in } e_2}$$

• Examples:

x # y x # let x = 1 in xx # true

^{▲□▶▲}圖▶▲≧▶▲≧▶ ≧ のQ@

V	arial	oles	and	Sul	osti	tution	

Scope and Binding

Types and evaluation

n Variables and Substitution

Alpha-conversion

Renaming

• We will also use the following *swapping* operation to rename variables:

• Example:

$$(\text{let } x = y \text{ in } x + z)(x \leftrightarrow z) = \text{let } z = y \text{ in } z + x$$

- We can now define "consistent renaming".
- Suppose $y \# e_2$. Then we can rename a let-expression as follows:

let $x = e_1$ in $e_2 \rightsquigarrow_{\alpha}$ let $y = e_1$ in $e_2(x \leftrightarrow y)$

- This is called *alpha-conversion*.
- Two expressions are *alpha-equivalent* if we can convert one to the other using alpha-conversions.

• Examples:

$$let x = y + z in x == w$$

$$\rightsquigarrow_{\alpha} let u = y + z in (x == w)(x \leftrightarrow u)$$

$$= let u = y + z in u(x \leftrightarrow u) == w(x \leftrightarrow u)$$

$$= let u = y + z in u == w$$

since u # (x == w).

But

let x = y + z in $x == w \not\rightarrow_{\alpha}$ let w = y + z in w == w

because w already appears in x == w.

- Once we add variables to our language, how does that affect typing?
- Consider

let $x = e_1$ in e_2

When is this well-formed? What type does it have?

- Consider a variable on its own: what type does it have?
- Different occurrences of the same variable in different scopes could have different types.
- We need a way to keep track of the types of variables

Types for variables and let, informally

- Suppose we have a way of keeping track of the types of variables (say, some kind of map or table)
- When we see a variable x, look up its type in the map.
- When we see a let $x = e_1$ in e_2 , find out the type of e_1 . Suppose that type is τ_1 . Add the information that x has type τ_1 to the map, and check e_2 using the augmented map.
- Note: The local information about *x*'s type should not persist beyond typechecking its scope *e*₂.

- Types for variables and let, informally
 - For example:

let x = 1 in x + 1

is well-formed: we know that x must be an int since it is set equal to 1, and then x + 1 is well-formed because x is an int and 1 is an int.

• On the other hand,

let
$$x = 1$$
 in if x then 42 else 17

is not well-formed: we again know that x must be an int while checking if x then 42 else 17, but then when we check that the conditional's test x is a bool, we find that it is actually an int.

	◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三三 少への		< □ ▶ <	回を (目を)(目) のべい
Variables and Substitution Scope and	Binding Types and evaluation	Variables and Substitution	Scope and Binding	Types and evaluation
Type Environments		Types for variabl	es and let, formally	

 We write Γ to denote a *type environment*, or a finite map from variable names to types, often written as follows:

$$\Gamma ::= x_1 : \tau_1, \ldots, x_n : \tau_n$$

- In Scala, we can use the built-in type ListMap[Variable,Type] for this.
 - hey, maybe that's why the Lab has all that stuff about ListMaps!
- Moreover, we write Γ(x) for the type of x according to Γ and Γ, x : τ to indicate extending Γ with the mapping x to τ.

• We now generalize the ideal of well-formedness:

Definition (Well-formedness in a context)

We write $\Gamma \vdash e : \tau$ to indicate that *e* is well-formed at type τ (or just "has type τ ") in context Γ .

• The rules for variables and let-binding are as follows:

 $\begin{array}{c} \vdash e:\tau \\ \hline \mathsf{for } \mathsf{L}_{\mathsf{Let}} \\ \\ \hline \frac{\Gamma(x)=\tau}{\Gamma\vdash x:\tau} \\ \end{array} \qquad \begin{array}{c} \frac{\Gamma\vdash e_1:\tau_1 \quad \Gamma, x:\tau_1\vdash e_2:\tau_2}{\Gamma\vdash \mathsf{let} \ x=e_1 \ \mathsf{in} \ e_2:\tau_2 \end{array} \end{array}$

Scope and Binding

Types and evaluation

Types for variables and let, formally

 \bullet We also need to generalize the $L_{\rm lf}$ rules to allow contexts:

$\boxed{\Gamma \vdash e : \tau} \text{ for } L_{lf}$	
$\overline{\Gamma \vdash n: int}$	$\frac{\Gamma \vdash e_1 : \tau_1 \Gamma \vdash e_2 : \tau_2 \oplus : \tau_1 \times \tau_2 \to \tau}{\Gamma \vdash e_1 \oplus e_2 : \tau}$
$\frac{\Gamma \vdash b: \text{bool}}{\Gamma \vdash b: \text{bool}}$	$\frac{\Gamma \vdash e_1 \oplus e_2 : \tau}{\Gamma \vdash e_1 : \tau \Gamma \vdash e_2 : \tau}$ $\frac{\Gamma \vdash e : \text{bool} \Gamma \vdash e_1 : \tau \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$

- This is straightforward: we just add Γ everywhere.
- The previous rules are special cases where Γ is empty.

Examples, revisited

We can now typecheck as follows:

	$x: int \vdash x: int$	$x: \texttt{int} \vdash 1$: int
$\vdash 1: \texttt{int}$	$x: int \vdash x$	x+1: int	
⊢le	t x = 1 in x + 1:	int	

On the other hand:

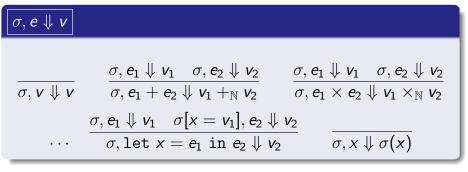
	$x: int \vdash x: bool \cdots$			
\vdash 1 : int	x : int \vdash if x then 42 else 17 :??			
\vdash let x	=1 in if x then 42 else 17 :??			

is not derivable because the judgment $x : int \vdash x : bool isn't$.

		≡▶∢≣▶ ≣ ∽੧⊘			・ 《三・ 《三・ 三 うんの
Variables and Substitution	Scope and Binding	Types and evaluation	Variables and Substitution	Scope and Binding	Types and evaluation
Evaluation for 2	let and variables		Substitution-ba	sed interpreter	
 One approach: whenever we see let x = e₁ in e₂, evaluate e₁ to v₁ replace x with v₁ in e₂ and evaluate that 		1 <i>e</i> ₂ ,		(x: Variable) extends Expr	
$e \Downarrow v$ for L _{Let}			case class Let(extends Expr	(x: Variable, e1: Expr, e2:	Expr)
	$rac{e_1 \Downarrow v_1 e_2[v_1/x] \Downarrow v_2}{ ext{let} \ x = e_1 \ ext{in} \ e_2 \Downarrow v_2}$		 def eval(e: Exp 	pr): Value = e match {	
	ways substitute values for variables rule for "evaluating" a variable	s, and do	case Let(x,e1 val v = eva val e2vx =		
	ion strategy is called <i>eager</i> , <i>strict</i> , asons) <i>call-by-value</i>	or (for	eval(e2vx) }	· · · · · · · · · · · · · · · · · · ·	
	sign choice. We will revisit this cho ernatives) later.	ice (and	 Note: No ca 	use for Var(x).	

Alternative semantics: environments

- Another common way to handle variables is to use an *environment*
- An environment σ is a partial function from variables to values (e.g. a Scala ListMap[Variable,Value]).
- We add σ as an argument to the evaluation judgment:



 Assignment 2 will ask you to implement such an interpreter. Summary

- Today we've covered:
 - Variables that can be replaced with values
 - Scope and binding, alpha-equivalence
 - Let-binding and how it affects typing and semantics

Next time:

- Functions and function types
- Recursion

- * ロ * * @ * * 注 * 注 * うくぐ