Overview

Elements of Programming Languages

Lecture 13: Small-step semantics and type safety

James Cheney

University of Edinburgh

November 8, 2016

- For the remaining lectures we consider some *cross-cutting* considerations for programming language design.
 - Last time: Imperative programming
- Today:
 - Finer-grained (small-step) evaluation
 - Type safety

< □ > < 酉 > < 重	▲ ■ ▲ ■ ● <		4 □ > 4 ^[] / _[]	・ * 臣 * * 臣 * 臣 * かくぐ
Judgments, Rules, and Induction	Type soundness	Small-step semantics	Judgments, Rules, and Induction	Type soundness
		Limitations c	of big-step semantics	

- In the first 6 lectures we covered:
 - Basic arithmetic (L_{Arith})
 - \bullet Conditionals and booleans (L_If)
 - Variables and let-binding (L_{Let})
 - Functions and recursion (L_{Rec})
 - Data structures (L_{Data})
- formalized using big-step evaluation (e ↓ v) and type judgments (Γ ⊢ e : τ)
- and implemented using Scala interpreters (CW1)

- Big-step semantics is convenient, but also limited
- It says how to evaluate the "whole program" (expression) to its "final value"
- But what if there is no final value?
 - $\bullet~\mbox{Expressions}$ like $1+\mbox{true}$ simply don't evaluate
 - Nonterminating programs don't evaluate either, but for a different reason!
- As we will see in later lectures, it is also difficult to deal with other features, like exceptions, using big-step semantics

Small-step semantics

• We will now consider an alternative: *small-step semantics*

 $e \mapsto e'$

- which says how to evaluate an expression "one step at a time"
- If $e_0 \mapsto \cdots \mapsto e_n$ then we write $e_0 \mapsto^* e_n$. (in particular, for n = 0 we have $e_0 \mapsto^* e_0$)
- We want it to be the case that $e \mapsto^* v$ if and only if $e \Downarrow v$.
- But \mapsto provides more detail about how this happens.
- It also allows expressions to "go wrong" (get stuck before reaching a value)

Small-step semantics: L_{Arith}

$\fbox{e\mapsto e'}$ for L_{Arith}	
$rac{e_1\mapsto e_1'}{e_1\oplus e_2\mapsto e_1'\oplus e_2}$	$rac{e_2\mapsto e_2'}{v_1\oplus e_2\mapsto v_1\oplus e_2'}$
$\overline{\textit{v}_1 + \textit{v}_2 \mapsto \textit{v}_1 +_{\mathbb{N}} \textit{v}_2}$	$\overline{\textit{v}_1 \times \textit{v}_2 \mapsto \textit{v}_1 \times_{\mathbb{N}} \textit{v}_2}$

- If the first subexpression of \oplus can take a step, apply it
- If the first subexpression is a value and the second can take a step, apply it
- If both sides are values, perform the operation
- Example:

$$1+(2 imes 3)\mapsto 1+6\mapsto 7$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの ◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ ●日 ● のへの Small-step semantics Judgments, Rules, and Induction Type soundness Small-step semantics Judgments, Rules, and Induction Type soundness Small-step semantics: L_{If} Small-step semantics: L_{l et} $e \mapsto e'$ for L_{If} $e \mapsto e'$ for L_{Let} $\frac{v_1 \neq v_2}{v_1 == v_1 \mapsto \texttt{true}} \qquad \frac{v_1 \neq v_2}{v_1 == v_2 \mapsto \texttt{false}}$ $e_1\mapsto e_1'$ $\boxed{\texttt{let } x = e_1 \texttt{ in } e_2 \mapsto \texttt{let } x = e_1' \texttt{ in } e_2}$ let $x = v_1$ in $e_2 \mapsto e_2[v_1/x]$

- If the expression e_1 is not yet a value, evaluate it one step
- Otherwise, substitute it and proceed
- Example:

let
$$x = 1 + 1$$
 in $x \times x \mapsto$ let $x = 2$ in $x \times x$
 $\mapsto 2 \times 2$
 $\mapsto 4$

 $\frac{e\mapsto e'}{\text{if e then e_1 else e_2}\mapsto \text{if e' then e_1 else e_2}}$ if true then e_1 else $e_2 \mapsto e_1$ if false then e_1 else $e_2 \mapsto e_2$

- If the conditional test is not a value, evaluate it one step
- Otherwise, evaluate the corresponding branch

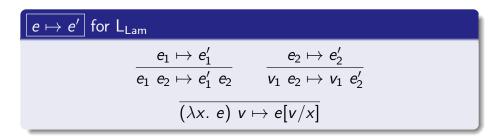
$$\texttt{if } 1 == \texttt{2} \texttt{ then } \texttt{3} \texttt{ else } \texttt{4} \hspace{0.2cm} \mapsto \hspace{0.2cm} \texttt{if false then } \texttt{3} \texttt{ else } \texttt{4}$$

Small-step semantics

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q ()

Type soundness

Small-step semantics: L_{Lam}



- If the function part is not a value, evaluate it one step
- If the function is a value and the argument isn't, evaluate it one step
- If both function and argument are values, substitute and proceed

 $((\lambda x.\lambda y.x + y) 1) 2 \mapsto (\lambda y.1 + y) 2$ $\mapsto 1 + 2 \mapsto 3$

Judgments, Rules, and Induction

Small-step semantics: L_{Rec}

$e\mapsto e'$ for $\mathsf{L}_{\mathsf{Rec}}$

 $(\operatorname{rec} f(x). e) v \mapsto e[\operatorname{rec} f(x).e/f, v/x]$

- Same rules for evaluation inside application
- Note that we need to substitute rec f(x).e for f.
- Suppose *fact* is the factorial function:

fact 2	\mapsto	if $2 == 0$ then 1 else $2 imes \mathit{fact}(2 -$	1)	
	\mapsto	if false then 1 else $2 imes \textit{fact}(2-1)$)	
	\mapsto	$2 imes$ fact $(2-1)\mapsto 2 imes$ fact (1)		
	\mapsto	2 imes (if $1 == 0$ then 1 else $1 imes$ fact	(1 - 1)	1))
	\mapsto	2 imes (if false then 1 else $1 imes$ fact(1 - 1))
	\mapsto	$2 imes (1 imes {\it fact}(1-1)) \mapsto 2 imes (1 imes {\it fact})$:(0))	
	\mapsto^*	$2 imes (1 imes 1) \mapsto 2 imes 1 \mapsto 2$		
		▲□ > ▲圖 > ▲ 書 > ▲ 書	•	୬୯୯
tics		Judgments, Rules, and Induction	Type sou	ndness

Judgments and Rules, in general

• A *judgment* is a relation among one or more abstract syntax trees.

- Examples so far: $e \Downarrow v$, $\Gamma \vdash e : \tau$, $e \mapsto e'$
- We have been defining judgments using *rules* of the form:

$$\overline{Q} \qquad \frac{P_1 \quad \cdots \quad P_n}{Q}$$

• where P_1, \ldots, P_n and Q are judgments.

Meaning of Rules

Small-step semant

• A rule of the form:

\overline{Q}

is called an *axiom*. It says that Q is always derivable.

• A rule of the form

$$\frac{P_1 \quad \cdots \quad P_n}{Q}$$

says that judgment Q is derivable if P_1, \ldots, P_n are derivable.

- Symbols like *e*, *v*, *τ* in rules stand for arbitrary expressions, values, or types.
- (If you have taken Logic Programming: These rules are a lot like Prolog clauses!)

Rule induction

Example: $e \Downarrow v$ implies $e \mapsto^* v$

Induction on derivations of $e \downarrow v$

Suppose P(-, -) is a predicate over pairs of expressions and values. If:

- P(v, v) holds for all values v
- If $P(e_1, v_1)$ and $P(e_2, v_2)$ then $P(e_1 + e_2, v_1 + v_2)$
- If $P(e_1, v_1)$ and $P(e_2, v_2)$ then $P(e_1 \times e_2, v_1 \times_{\mathbb{N}} v_2)$

then $e \Downarrow v$ implies P(e, v).

- Rule induction can be derived from mathematical induction on the size (or height) of the derivation tree.
- (Much like structural induction.)
- We won't formally prove this.

Inductive case. If the derivation is of the form $\frac{e_1 \Downarrow v_2 \quad e_2 \Downarrow v_2}{e_1 + e_2 \Downarrow v_1 + \mathbb{N} v_2}$ then by induction, we know $e_1 \mapsto^* v_1$ and $e_2 \mapsto^* v_2$. Using the small-step rules, we can then show $e_1 + e_2 \mapsto^* v_1 + e_2 \mapsto^* v_1 + v_2 \mapsto v_1 + v_2$

• The case for \times is similar.

• As an example, we'll show a few cases of the forward direction of:

Theorem (Equivalence of big-step and small-step evaluation)

 $e \Downarrow v$ if and only if $e \mapsto^* v$.

Base case.

If the derivation is of the form

$\overline{n \Downarrow n}$

for some number n, then e = n is already a value v = n, so no steps are needed to evaluate it, i.e. $n \mapsto^* n$ in zero steps.

- The central property of a type system is *soundness*.
- Roughly speaking, soundness means "well-typed programs don't go wrong" [Milner].
- But what exactly does "go wrong" mean?
 - For large-step: hard to say
 - For small-step: "go wrong" means "stuck" expression e that is not a value and cannot take a step.
- We could show something like:

Theorem (Soundness)

If $\vdash e : \tau$ and $e \mapsto^* v$ then $\vdash v : \tau$.

• This says that if an expression evaluates to a value, then the value has the right type.

Type soundness

Type soundness revisited

• We can decompose soundness into two parts:

Lemma (Progress)

If $\vdash e : \tau$ then either e is a value or for some e' we have $e \mapsto e'$.

Lemma (Preservation)

If $\vdash e : \tau$ and $e \mapsto e'$ then $\vdash e' : \tau$

• Combining these two, can show:

Theorem (Soundness)

- If $\vdash e : \tau$ and $e \mapsto^* v$ then $\vdash v : \tau$.
 - We will sketch these properties for L_{If} (leaving out a lot of formal detail)

Small-step semantics

Judgments, Rules, and Induction

Progress for L_{lf}

Progress for if.

If the derivation is of the form

```
\frac{\vdash e:\texttt{bool} \vdash e_1:\tau \vdash e_2:\tau}{\vdash \texttt{if } e\texttt{ then } e_1\texttt{ else } e_2:\tau}
```

then by induction, either e is a value or can take a step. There are two cases:

• If $e \mapsto e'$ then

 $\text{ if } e \text{ then } e_1 \text{ else } e_2 \mapsto \text{ if } e' \text{ then } e_1 \text{ else } e_2. \\$

• If e is a value, it must be either true or false. Then either if true then e_1 else $e_2 \mapsto e_1$ or if false then e_1 else $e_2 \mapsto e_2$.

Progress for L_{lf}

Small-step semantics

Progress is proved by induction on $\vdash e : \tau$ derivations. We show some representative cases.

Progress for +.

 $\frac{\vdash e_1:\texttt{int} \quad e_2:\texttt{int}}{\vdash e_1+e_2:\texttt{int}}$

If the derivation is of the above form, then by induction e_1 is either a value or can take a step, and likewise for e_2 . There are three cases.

- If $e_1\mapsto e_1'$ then $e_1+e_2\mapsto e_1'+e_2.$
- If e_1 is a value v_1 and $e_2 \mapsto e_2'$, then $v_1 + e_2 \mapsto v_1 + e_2'$.
- If both e_1 and e_2 are values then they must both be numbers $n_1, n_2 \in \mathbb{N}$, so $e_1 + e_2 \mapsto n_1 +_{\mathbb{N}} n_2$.

Small-step semantics

Judgments, Rules, and Induction

Type soundness

Preservation for L_{lf}

Preservation is proved by induction on the structure of $\vdash e : \tau$. We'll consider some representative cases:

Preservation for +.

 $\frac{\vdash e_1:\texttt{int} \quad \vdash e_2:\texttt{int}}{\vdash e_1 + e_2:\texttt{int}}$

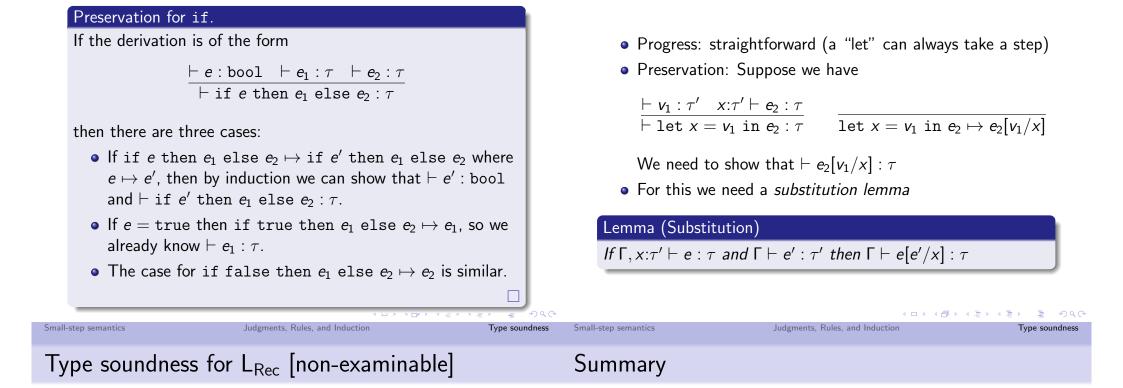
If the derivation is of the above form, there are three cases.

- If $e_i = v_i$ and $v_1 + v_2 \mapsto v_1 +_{\mathbb{N}} v_2$ then obviously $\vdash v_1 +_{\mathbb{N}} v_2$: int.
- If $e_1 + e_2 \mapsto e'_1 + e_2$ where $e_1 \mapsto e'_1$, then since $\vdash e_1$: int, we have $\vdash e'_1$: int, so $\vdash e'_1 + e_2$: int also.

• The case where $e_1 = v_1$ and $v_1 + e_2 \mapsto v_1 + e_2'$ is similar.

Type soundness for L_{Let} [non-examinable]

Preservation for L_{If}



• Progress: If an application term is well-formed:

$$\frac{\vdash \mathbf{e}_1:\tau_1 \rightarrow \tau_2 \quad \vdash \mathbf{e}_2:\tau_1}{\vdash \mathbf{e}_1 \ \mathbf{e}_2:\tau_2}$$

then by induction, e_1 is either a value or $e_1 \mapsto e'_1$ for some e'_1 . If it is a value, it must be either a lambda-expression or a recursive function, so $e_1 e_2$ can take a step. Otherwise, $e_1 e_2 \mapsto e'_1 e_2$.

• Preservation: Similar to let, using substitution lemma for the cases

$$(\lambda x. e) v \mapsto e[v/x]$$

(rec f(x). e) v $\mapsto e[\operatorname{rec} f(x). e/f, v/x]$

• Today we have presented

- Small-step evaluation: a finer-grained semantics
- Induction on derivations
- $\bullet\,$ Type soundness (details for $L_{lf})$
- Sketch of type soundness for L_{Rec} [Non-examinable]
- Deep breath: No more proofs from now on.
- Remaining lectures cover cross-cutting language features, which often have subtle interactions with each other
 - Next time: Guest lecture by Michel Steuwer on *DSLs* and rewrite-based optimizations for performance-portable parallel programming