
Small-step semantics Judgments, Rules, and Induction Type soundness

Elements of Programming Languages
Lecture 13: Small-step semantics and type safety

James Cheney

University of Edinburgh

November 8, 2016

Small-step semantics Judgments, Rules, and Induction Type soundness

Overview

For the remaining lectures we consider some cross-cutting
considerations for programming language design.

Last time: Imperative programming

Today:

Finer-grained (small-step) evaluation
Type safety

Small-step semantics Judgments, Rules, and Induction Type soundness

Refresher

In the first 6 lectures we covered:

Basic arithmetic (LArith)
Conditionals and booleans (LIf)
Variables and let-binding (LLet)
Functions and recursion (LRec)
Data structures (LData)

formalized using big-step evaluation (e ⇓ v) and type
judgments (Γ ` e : τ)

and implemented using Scala interpreters (CW1)

Small-step semantics Judgments, Rules, and Induction Type soundness

Limitations of big-step semantics

Big-step semantics is convenient, but also limited

It says how to evaluate the “whole program” (expression)
to its “final value”

But what if there is no final value?

Expressions like 1 + true simply don’t evaluate
Nonterminating programs don’t evaluate either, but for
a different reason!

As we will see in later lectures, it is also difficult to deal
with other features, like exceptions, using big-step
semantics



Small-step semantics Judgments, Rules, and Induction Type soundness

Small-step semantics

We will now consider an alternative: small-step semantics

e 7→ e ′

which says how to evaluate an expression “one step at a
time”

If e0 7→ · · · 7→ en then we write e0 7→∗ en. (in particular,
for n = 0 we have e0 7→∗ e0)

We want it to be the case that e 7→∗ v if and only if
e ⇓ v .

But 7→ provides more detail about how this happens.

It also allows expressions to “go wrong” (get stuck before
reaching a value)

Small-step semantics Judgments, Rules, and Induction Type soundness

Small-step semantics: LArith

e 7→ e ′ for LArith

e1 7→ e ′1
e1 ⊕ e2 7→ e ′1 ⊕ e2

e2 7→ e ′2
v1 ⊕ e2 7→ v1 ⊕ e ′2

v1 + v2 7→ v1 +N v2 v1 × v2 7→ v1 ×N v2

If the first subexpression of ⊕ can take a step, apply it

If the first subexpression is a value and the second can
take a step, apply it

If both sides are values, perform the operation

Example:
1 + (2× 3) 7→ 1 + 6 7→ 7

Small-step semantics Judgments, Rules, and Induction Type soundness

Small-step semantics: LIf

e 7→ e ′ for LIf

v == v 7→ true

v1 6= v2
v1 == v2 7→ false

e 7→ e ′

if e then e1 else e2 7→ if e ′ then e1 else e2

if true then e1 else e2 7→ e1

if false then e1 else e2 7→ e2

If the conditional test is not a value, evaluate it one step

Otherwise, evaluate the corresponding branch

if 1 == 2 then 3 else 4 7→ if false then 3 else 4

7→ 4

Small-step semantics Judgments, Rules, and Induction Type soundness

Small-step semantics: LLet

e 7→ e ′ for LLet

e1 7→ e ′1
let x = e1 in e2 7→ let x = e ′1 in e2

let x = v1 in e2 7→ e2[v1/x ]

If the expression e1 is not yet a value, evaluate it one step

Otherwise, substitute it and proceed

Example:

let x = 1 + 1 in x × x 7→ let x = 2 in x × x

7→ 2× 2

7→ 4



Small-step semantics Judgments, Rules, and Induction Type soundness

Small-step semantics: LLam

e 7→ e ′ for LLam

e1 7→ e ′1
e1 e2 7→ e ′1 e2

e2 7→ e ′2
v1 e2 7→ v1 e ′2

(λx . e) v 7→ e[v/x ]

If the function part is not a value, evaluate it one step

If the function is a value and the argument isn’t, evaluate
it one step

If both function and argument are values, substitute and
proceed

((λx .λy .x + y) 1) 2 7→ (λy .1 + y) 2

7→ 1 + 2 7→ 3

Small-step semantics Judgments, Rules, and Induction Type soundness

Small-step semantics: LRec

e 7→ e ′ for LRec

(rec f (x). e) v 7→ e[rec f (x).e/f , v/x ]

Same rules for evaluation inside application
Note that we need to substitute rec f (x).e for f .
Suppose fact is the factorial function:

fact 2 7→ if 2 == 0 then 1 else 2× fact(2− 1)
7→ if false then 1 else 2× fact(2− 1)
7→ 2× fact(2− 1) 7→ 2× fact(1)
7→ 2× (if 1 == 0 then 1 else 1× fact(1− 1))
7→ 2× (if false then 1 else 1× fact(1− 1))
7→ 2× (1× fact(1− 1)) 7→ 2× (1× fact(0))
7→∗ 2× (1× 1) 7→ 2× 1 7→ 2

Small-step semantics Judgments, Rules, and Induction Type soundness

Judgments and Rules, in general

A judgment is a relation among one or more abstract
syntax trees.

Examples so far: e ⇓ v , Γ ` e : τ , e 7→ e ′

We have been defining judgments using rules of the form:

Q
P1 · · · Pn

Q

where P1, . . . ,Pn and Q are judgments.

Small-step semantics Judgments, Rules, and Induction Type soundness

Meaning of Rules

A rule of the form:
Q

is called an axiom. It says that Q is always derivable.

A rule of the form

P1 · · · Pn

Q

says that judgment Q is derivable if P1, . . . ,Pn are
derivable.

Symbols like e, v , τ in rules stand for arbitrary
expressions, values, or types.

(If you have taken Logic Programming: These rules are a
lot like Prolog clauses!)



Small-step semantics Judgments, Rules, and Induction Type soundness

Rule induction

Induction on derivations of e ⇓ v

Suppose P(−,−) is a predicate over pairs of expressions and
values. If:

P(v , v) holds for all values v

If P(e1, v1) and P(e2, v2) then P(e1 + e2, v1 +N v2)

If P(e1, v1) and P(e2, v2) then P(e1 × e2, v1 ×N v2)

then e ⇓ v implies P(e, v).

Rule induction can be derived from mathematical
induction on the size (or height) of the derivation tree.

(Much like structural induction.)

We won’t formally prove this.

Small-step semantics Judgments, Rules, and Induction Type soundness

Example: e ⇓ v implies e 7→∗ v

As an example, we’ll show a few cases of the forward
direction of:

Theorem (Equivalence of big-step and small-step evaluation)

e ⇓ v if and only if e 7→∗ v .

Base case.

If the derivation is of the form

n ⇓ n

for some number n, then e = n is already a value v = n, so no
steps are needed to evaluate it, i.e. n 7→∗ n in zero steps.

Small-step semantics Judgments, Rules, and Induction Type soundness

Example: e ⇓ v implies e 7→∗ v

Inductive case.

If the derivation is of the form

e1 ⇓ v2 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

then by induction, we know e1 7→∗ v1 and e2 7→∗ v2. Using the
small-step rules, we can then show

e1 + e2 7→∗ v1 + e2 7→∗ v1 + v2 7→ v1 +N v2

The case for × is similar.

Small-step semantics Judgments, Rules, and Induction Type soundness

Type soundness

The central property of a type system is soundness.

Roughly speaking, soundness means “well-typed programs
don’t go wrong” [Milner].

But what exactly does “go wrong” mean?

For large-step: hard to say
For small-step: “go wrong” means “stuck” expression e
that is not a value and cannot take a step.

We could show something like:

Theorem (Soundness)

If ` e : τ and e 7→∗ v then ` v : τ .

This says that if an expression evaluates to a value, then
the value has the right type.



Small-step semantics Judgments, Rules, and Induction Type soundness

Type soundness revisited

We can decompose soundness into two parts:

Lemma (Progress)

If ` e : τ then either e is a value or for some e ′ we have
e 7→ e ′.

Lemma (Preservation)

If ` e : τ and e 7→ e ′ then ` e ′ : τ

Combining these two, can show:

Theorem (Soundness)

If ` e : τ and e 7→∗ v then ` v : τ .

We will sketch these properties for LIf (leaving out a lot
of formal detail)

Small-step semantics Judgments, Rules, and Induction Type soundness

Progress for LIf

Progress is proved by induction on ` e : τ derivations. We
show some representative cases.

Progress for +.

` e1 : int e2 : int
` e1 + e2 : int

If the derivation is of the above form, then by induction e1 is
either a value or can take a step, and likewise for e2. There are
three cases.

If e1 7→ e ′1 then e1 + e2 7→ e ′1 + e2.

If e1 is a value v1 and e2 7→ e ′2, then v1 + e2 7→ v1 + e ′2.

If both e1 and e2 are values then they must both be
numbers n1, n2 ∈ N, so e1 + e2 7→ n1 +N n2.

Small-step semantics Judgments, Rules, and Induction Type soundness

Progress for LIf

Progress for if.

If the derivation is of the form

` e : bool ` e1 : τ ` e2 : τ
` if e then e1 else e2 : τ

then by induction, either e is a value or can take a step. There
are two cases:

If e 7→ e ′ then
if e then e1 else e2 7→ if e ′ then e1 else e2.

If e is a value, it must be either true or false. Then
either if true then e1 else e2 7→ e1 or
if false then e1 else e2 7→ e2.

Small-step semantics Judgments, Rules, and Induction Type soundness

Preservation for LIf

Preservation is proved by induction on the structure of ` e : τ .
We’ll consider some representative cases:

Preservation for +.

` e1 : int ` e2 : int
` e1 + e2 : int

If the derivation is of the above form, there are three cases.

If ei = vi and v1 + v2 7→ v1 +N v2 then obviously
` v1 +N v2 : int.

If e1 + e2 7→ e ′1 + e2 where e1 7→ e ′1, then since ` e1 : int,
we have ` e ′1 : int, so ` e ′1 + e2 : int also.

The case where e1 = v1 and v1 + e2 7→ v1 + e ′2 is similar.



Small-step semantics Judgments, Rules, and Induction Type soundness

Preservation for LIf

Preservation for if.

If the derivation is of the form

` e : bool ` e1 : τ ` e2 : τ
` if e then e1 else e2 : τ

then there are three cases:

If if e then e1 else e2 7→ if e ′ then e1 else e2 where
e 7→ e ′, then by induction we can show that ` e ′ : bool
and ` if e ′ then e1 else e2 : τ .

If e = true then if true then e1 else e2 7→ e1, so we
already know ` e1 : τ .

The case for if false then e1 else e2 7→ e2 is similar.

Small-step semantics Judgments, Rules, and Induction Type soundness

Type soundness for LLet [non-examinable]

Progress: straightforward (a “let” can always take a step)

Preservation: Suppose we have

` v1 : τ ′ x :τ ′ ` e2 : τ
` let x = v1 in e2 : τ let x = v1 in e2 7→ e2[v1/x ]

We need to show that ` e2[v1/x ] : τ

For this we need a substitution lemma

Lemma (Substitution)

If Γ, x :τ ′ ` e : τ and Γ ` e ′ : τ ′ then Γ ` e[e ′/x ] : τ

Small-step semantics Judgments, Rules, and Induction Type soundness

Type soundness for LRec [non-examinable]

Progress: If an application term is well-formed:

` e1 : τ1 → τ2 ` e2 : τ1
` e1 e2 : τ2

then by induction, e1 is either a value or e1 7→ e ′1 for some
e ′1. If it is a value, it must be either a lambda-expression
or a recursive function, so e1 e2 can take a step.
Otherwise, e1 e2 7→ e ′1 e2.

Preservation: Similar to let, using substitution lemma
for the cases

(λx . e) v 7→ e[v/x ]
(rec f (x). e) v 7→ e[rec f (x). e/f , v/x ]

Small-step semantics Judgments, Rules, and Induction Type soundness

Summary

Today we have presented

Small-step evaluation: a finer-grained semantics
Induction on derivations
Type soundness (details for LIf)
Sketch of type soundness for LRec [Non-examinable]

Deep breath: No more proofs from now on.

Remaining lectures cover cross-cutting language features,
which often have subtle interactions with each other

Next time: Guest lecture by Michel Steuwer on DSLs
and rewrite-based optimizations for
performance-portable parallel programming


