Abstract syntax trees

Structural Induction

Today

Elements of Programming Languages

Lecture 1: Abstract syntax

James Cheney

University of Edinburgh

September 21, 2017

We will introduce some basic tools used throughout the course:

- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

	< □ > < 合 > < 言)	▲ Ξ < ● < ● < ●			▲□▶▲□▶▲≡▶▲≡▶ ≡ め��
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
L _{Arith}		Concrete vs. abstract syntax			

- We will start out with a very simple (almost trivial) "programming language" called L_{Arith} to illustrate these concepts
- $\bullet\,$ Namely, expressions with integers, + and $\times\,$
- Examples:
 - 1 + 2 ---> 3 1 + 2 * 3 ---> 7 (1 + 2) * 3 ---> 9

- **Concrete syntax:** the actual syntax of a programming language
 - Specify using context-free grammars (or generalizations)
 - Used in compiler/interpreter front-end, to decide how to interpret **strings** as programs
- Abstract syntax: the "essential" constructs of a programming language
 - Specify using so-called *Backus Naur Form* (BNF) grammars
 - Used in specifications and implementations to describe the *abstract syntax trees* of a language.

CFG vs. BNF

expressions

Abstract syntax trees

 $F \rightarrow F$ TIMES $F \mid$ NUM \mid LPAREN E RPAREN

• Tokenization ($+ \rightarrow$ PLUS, etc.), comments, whitespace

Context-free grammar giving concrete syntax for

• Needs to handle precedence, parentheses, etc.

 $E \rightarrow E$ PLUS $F \mid F$

usually handled by a separate stage

Structural Induction

BNF grammars

• BNF grammar giving abstract syntax for expressions

 $Expr \ni e ::= e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N}$

- This says: there are three kinds of expressions
 - Additions $e_1 + e_2$, where two expressions are combined with the + operator
 - Multiplications $e_1 \times e_2$, where two expressions are combined with the \times operator

 $e \rightarrow e_1 + e_2 \rightarrow 3 + e_2 \rightarrow 3 + (e_3 \times e_4) \rightarrow \cdots$

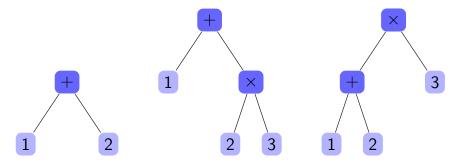
- Numbers $n \in \mathbb{N}$
- Much like CFG rules, we can "derive" more complex expressions:

- We will usually use BNF-style rules to define abstract syntax trees
 - and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.
- **Convention:** the subscripts on occurrences of *e* on the RHS don't affect the meaning, just for readability
- **Convention:** we will freely use parentheses in abstract syntax notation to disambiguate

• e.g.

$$(1+2) \times 3$$
 vs. $1+(2 \times 3)$

We view a BNF grammar to define a collection of abstract syntax trees, for example:



These can be represented in a program as trees, or in other ways (which we will cover in due course)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Concrete vs. abstract syntax

Languages for examples

Abstract syntax trees

Structural Induction

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

ASTs in Java

}

- We will use several languages for examples throughout the course:
 - Java: typed, object-oriented
 - Python: untyped, object-oriented with some functional features
 - Haskell: typed, functional
 - Scala: typed, combines functional and OO features
 - Sometimes others, to discuss specific features
- You do not need to already know all these languages!

• In Java ASTs can be defined using a class hierarchy: abstract class Expr {} class Num extends Expr { public int n; Num(int _n) { n = _n; }

◆□ > ◆四 > ◆回 > ◆回 > → 回 → ○○○			<ロ><週><2>		
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
ASTs in Java			ASTs in Java		

• In Java ASTs can be defined using a class hierarchy:

```
...
class Plus extends Expr {
   public Expr e1;
   public Expr e2;
   Plus(Expr _e1, Expr _e2) {
     e1 = _e1;
     e2 = _e2;
   }
}
class Times extends Expr {... // similar
}
```

```
• Traverse ASTs by adding a method to each class:
    abstract class Expr {
        abstract public int size();
    }
    class Num extends Expr { ...
        public int size() { return 1;}
    }
    class Plus extends Expr { ...
        public int size() {
            return e1.size(e1) + e2.size() + 1;
        }
    }
    class Times extends Expr {... // similar
    }
```

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

Concrete vs. abstract syntax

ASTs in Haskell

Structural Induction

ASTs in Python

• Python is similar, but shorter (no types): class Expr: pass # "abstract" class Num(Expr): def __init__(self,n): self.n = n def size(self): return 1 class Plus(Expr): def __init__(self,e1,e2): self.e1 = e1 self.e2 = e2 def size(self): return self.e1.size() + self.e2.size() + 1 class Times(Expr): # similar...

In Haskell, ASTs are easily defined as *datatypes*: data Expr = Num Integer | Plus Expr Expr | Times Expr Expr Likewise one can easily write functions to traverse them: size :: Expr -> Integer size (Num n) = 1 size (Plus e1 e2) = (size e1) + (size e2) + 1 size (Times e1 e2) = (size e1) + (size e2) + 1

Concrete vs. abstract syntax Abstract syntax trees Structural Induction Concrete vs. abstract syntax Abstract syntax trees Structural Induction ASTTs in Scala Concrete vs. abstract syntax Concrete vs. abstract syntax

- In Scala, can define ASTs conveniently using *case classes*: abstract class Expr case class Num(n: Integer) extends Expr case class Plus(e1: Expr, e2: Expr) extends Expr case class Times(e1: Expr, e2: Expr) extends Expr
- Again one can easily write functions to traverse them
 using pattern matching:
 def size (e: Expr): Int = e match {
 case Num(n) => 1
 case Plus(e1,e2) =>
 size(e1) + size(e2) + 1
 case Times(e1,e2) =>
 size(e1) + size(e2) + 1
 }

- Java:

new Plus(new Num(2), new Num(2))

- Python:
 - Plus(Num(2),Num(2))
- Haskell:

Plus(Num(2),Num(2))

• Scala: (the "new" is optional for case classes:) new Plus(new Num(2),new Num(2)) Plus(Num(2),Num(2))

Concrete vs. abstract syntax

Precedence, Parentheses and Parsimony

- Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end
- Some languages, notably LISP/Scheme/Racket, eschew infix notation.
- All programs are essentially so-called S-Expressions:

$$s ::= a \mid (a \ s_1 \ \cdots \ s_n)$$

so their concrete syntax is very close to abstract syntax.

• For example

1 + 2	> (+ 1 2)
1 + 2 * 3	> (+ 1 (* 2 3))
(1 + 2) * 3	> (* (+ 1 2) 3)

The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
 - (Mathematical) induction
 - (over \mathbb{N})
 - (Structural) induction
 - (over ASTs)
 - (Rule) induction
 - (over derivations)
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction Concrete vs. abstract syntax trees Structural Induction Induction Induction Induction over expressions

• A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

- P(n) holds for every number $n \in \mathbb{N}$
- for any expressions e_1, e_2 , if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 + e_2)$ also holds
- for any expressions e_1, e_2 , if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 \times e_2)$ also holds

Then P(e) holds for all expressions e.

 Note that we are performing induction over *abstract* syntax trees, not numbers!

• Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

- *P*(0) holds
- for any $n \in \mathbb{N}$, if P(n) holds then P(n+1) also holds

Then P(n) holds for all $n \in \mathbb{N}$.

Abstract syntax trees

Structural Induction

Proof of expression induction principle

Define the *size* of an expression in the obvious way:

$$egin{array}{rll} size(n)&=&1\ size(e_1+e_2)&=&size(e_1)+size(e_2)+1\ size(e_1 imes e_2)&=&size(e_1)+size(e_2)+1 \end{array}$$

Given P(-) satisfying the assumptions of expression induction, we prove the property

Q(n) =for all e with size(e) < n we have P(e)

Since any expression e has a finite size, P(e) holds for any expression.

		▲ ■ ▶ ■ • • • • • • • • • • • • • • • • •
Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
Summary		

• We covered:

- Concrete vs. Abstract syntax
- Abstract syntax trees
- $\bullet\,$ Abstract syntax of L_{Arith} in several languages
- Structural induction over syntax trees
- This might seem like a lot to absorb, but don't worry! We will revisit and reinforce these concepts throughout the course.
- Next time:
 - Evaluation
 - ${\scriptstyle \bullet}~$ A simple interpreter
 - Operational semantics rules

Proof of expression induction principle

Proof.

We prove that Q(n) holds for all *n* by induction on *n*:

- The base case n = 0 is vacuous
- For n + 1, then assume Q(n) holds and consider any e with size(e) < n + 1. Then there are three cases:
 - if $e = m \in \mathbb{N}$ then P(e) holds by part 1 of expression induction principle
 - if e = e₁ + e₂ then size(e₁) < size(e) ≤ n and similarly for size(e₂) < size(e) ≤ n. So, by induction, P(e₁) and P(e₂) hold, and by part 2 of expression induction principle P(e) holds.
 - if $e = e_1 \times e_2$, the same reasoning applies.

・ 日本 《日本 《日本 《日本 (日本