What is programming?

Elements of Programming Languages

Lecture 0: Introduction and Course Outline

James Cheney
University of Edinburgh

September 20, 2016

- Computers are deterministic machines, controlled by low-level (usually binary) machine code instructions.
- A computer can [only] do whatever we know how to order it to perform (Ada Lovelace, 1842)
- Programming is communication:
- between a person and a machine, to tell the machine what to do
- between people, to communicate ideas about algorithms and computation

From machine code to programming languages
What is a programming language?

- The first programmers wrote all of their code directly in machine instructions
- ultimately, these are just raw sequences of bits.
- Such programs are extremely difficult to write, debug or understand.
- Simple "assembly languages" were introduced very early (1950's) as a human-readable notation for machine code
- FORTRAN (1957) — one of the first "high-level" languages (procedures, loops, etc.)
- For the purpose of this course, a programming language is a formal, executable language for computations
- Non-examples:

What is a programming language?

What is a programming language?

- For the purpose of this course, a programming language is a formal, executable language for computations
- Non-examples:
- English (not formal)
- For the purpose of this course, a programming language is a formal, executable language for computations
- Non-examples:
- English (not formal)
- First-order Logic (formal, but not executable in general)

What is a programming language?

- For the purpose of this course, a programming language is a formal, executable language for computations
- Non-examples:
- English (not formal)
- First-order Logic (formal, but not executable in general)
- HTML4 (formal, executable but not computational)
- For the purpose of this course, a programming language is a formal, executable language for computations
- Non-examples:
- English (not formal)
- First-order Logic (formal, but not executable in general)
- HTML4 (formal, executable but not computational)
- (HTML is in a gray area - with JavaScript or HTML5 extensions it is a lot more "computational")

Why are there so many?

What do they have in common?

- Imperative/procedural: FORTRAN, COBOL, Algol, Pascal, C
- Object-oriented, untyped: Simula, Smalltalk, Python, Ruby, JavaScript
- Object-oriented, typed: C++, Java, Scala, C\#
- Functional, untyped: LISP, Scheme, Racket
- Functional, typed: ML, OCaml, Haskell, (Scala), F\#
- Logic/declarative: Prolog, Curry, SQL
- All (formal) languages have a written form: we call this (concrete) syntax
- All (executable) languages can be implemented on computers: e.g. by a compiler or interpreter
- All programming languages describe computations: they have some computational meaning, orsemantics
- In addition, most languages provide abstractions for organizing, decomposing and combining parts of programs to solve larger problems.

There are many so-called "programming language paradigms":

- imperative (variables, assignment, if/while/for, procedures)
- object-oriented (classes, inheritance, interfaces, subtyping)
- typed (statically, dynamically, strongly, un/uni-typed)
- functional (λ-calculus, pure, lazy)
- logic/declarative (computation as deduction, query languages)
- A great deal of effort has been expended trying to find the "best" paradigm, with no winner declared so far.
- In reality, they all have strengths and weaknesses, and almost all languages make compromises or synthesize ideas from several "paradigms".
- This course emphasizes different programming language features, or elements
- Analogy: periodic table of the elements in chemistry
- Goal: understand the basic components that appear in a variety of languages, and how they "combine" or "react" with one another.

Applicability

- Major new general-purpose languages come along every decade or so.
- Hence, few programmers or computer scientists will design a new, widely-used general purpose language, or write a compiler
- However, domain-specific languages are increasingly used, and the same principles of design apply to them
- Moreover, understanding the principles of language design can help you become a better programmer
- Learn new languages / recognize new features faster
- Understand when and when not to use a given feature
- Assignments will cover practical aspects of programming languages: interpreters and DSLs/translators

Course Administration

Course Administration

- Lecturer: James Cheney jcheney@inf.ed.ac.uk, IF 5.29
- Office hours: Monday 11:30-12:30, or by appointment
- TA: TBA
- 20 lectures (Tu/F 1410-1500)
- 2 intro/review [non-examinable]
- 2 guest lectures [non-examinable]
- 16 core material [examinable]
- 1 two-hour lab session (September 28, 1210-1400)
- 8 one-hour tutorial sessions, starting in week 3 (times and groups TBA)
All of these activities are part of the course and may cover examinable material, unless explicitly indicated.
－Coursework：
－Assignment 1：Lab exercise sheet，available during week 2 ，due during week 3 ，worth 0% of final grade
－Assignment 2：available during week 3 ，due week 6 ， worth 0% of final grade．
－Assignment 3：available during week 6 ，due week 10 ， worth 25% of final grade．
－The first two assignments are marked for formative feedback only，but the third builds on the first two．
－One（written）exam：worth 75% of final grade．
－The main language for this course will be Scala
－Scala offers an interesting combination of ideas from functional and object－oriented programming styles
－We will use Scala（and other languages）to illustrate key ideas
－We will also use Scala for the assignments
－However，this is not a＂course on Scala＂
－You will be expected to figure out certain things for yourselves（or ask for help）
－We will not teach every feature of Scala，nor are you expected to learn every dark corner
－In fact，part of the purpose of the course is to help you recognize such dark corners and avoid them unless you have a good reason．．．

Recommended reading

－There is no official textbook for the course that we will follow exactly
－However，the following are recommended readings to complement the course material：
－Practical Foundations for Programming Languages， second edition，（PFPL2），by Robert Harper．Available online from the author＇s webpage and through the University Library＇s ebook access．
－Concepts in Programming Languages（CPL），by John Mitchell．Available through the University Library＇s ebook access．
－The webpage lecture outline will indicate relevant sections and additional suggested readings

Course Outline

Wadler's Law

In any language design, the total time spent discussing a feature in this list is proportional to two raised to the power of its position.
0. Semantics

1. Syntax
2. Lexical syntax
3. Lexical syntax of comments

Wadler's law is an example of a phenomenon called "bike-shedding":

- the number of people who feel qualified to comment on an issue is inversely proportional to the expertise required to understand it
- This course is primarily about language design and semantics.
- As a foundation for this, we will necessarily spend some time on abstract syntax trees (and programming with them in Scala)
- We will cover: Name-binding, substitution, static vs. dynamic scope
- We will not cover: Concrete syntax, lexing, parsing, precedence (but Compiling Techniques does)

Interpreters, Compilers and Virtual Machines

- Suppose we have a source programming language L_{S}, a target language L_{T}, and an implementation language L_{I}
- An interpreter for L_{S} is an L_{I} program that executes L_{S} programs.
- When both L_{S} and L_{I} are low-level (e.g. $L_{S}=J V M, L_{I}$ $=x 86$), an interpreter for L is called a virtual machine.
- A translator from L_{S} to L_{T} is an L_{I} program that translates programs in L_{S} to "equivalent" programs in L_{T}.
- When L_{T} is low-level, a translator to L_{T} is usually called a compiler.
- In this course, we will use interpreters to explore different language features.
- How can we understand the meaning of a language/feature, or compare different languages/features?
- Three basic approaches:
- Operational semantics defines the meaning of a program in terms of "rules" that explain the step-by-step execution of the program
- Denotational semantics defines the meaning of a program by interpreting it in a mathematical structure
- Axiomatic semantics defines the meaning of a program via logical specifications and laws
- All three have strengths and weaknesses
- We will focus on operational semantics in this course: it is the most accessible and flexible approach.

The three most important things

Data Structures and Abstractions

- The three most important considerations for programming language design are:
- (Data) Abstraction
- (Control) Abstraction
- (Modular) Abstraction
- We will investigate different language elements that address the need for these abstractions, and how different design choices interact.
- In particular, we will see how types offer a fundamental organizing principle for programming language features.
- Data structures provide ways of organizing data:
- option types vs. null values
- pairs/record types;
- variant/union types;
- lists/recursive types;
- pointers/references
- Data abstractions make it possible to hide data structure choices:
- overloading (ad hoc polymorphism)
- generics (parametric polymorphism)
- subtyping
- abstract data types

Control Structures and Abstractions

Design dimensions and modularity

- Control structures allow us to express flow of control:
- goto
- for/while loops
- case/switch
- exceptions
- Control abstractions make it possible to hide implementation details:
- procedure call/return
- function types/higher-order functions
- continuations
- Programming "in the large" requires considering several cross-cutting design dimensions:
- eager vs. lazy evaluation
- purity vs. side-effects
- static vs. dynamic typing
- and modularity features
- modules, namespaces
- objects, classes, inheritance
- interfaces, information hiding

The art and science of language design

Course goals

－Language design is both an art and a science
－The most popular languages are often not the ones with the cleanest foundations（and vice versa）
－This course teaches the science：formalisms and semantics
－Aesthetics and＂good design＂are hard to teach（and hard to assess），but one of the assignments will give you an opportunity to experiment with domain－specific language design

By the end of this course，you should be able to：
（1）Investigate the design and behaviour of programming languages by studying implementations in an interpreter
（2）Employ abstract syntax and inference rules to understand and compare programming language features
（3）Design and implement a domain－specific language capturing a problem domain
（ （ Understand the design space of programming languages， including common elements of current languages and how they are combined to construct language designs
（0．Critically evaluate the programming languages in current use，acquire and use language features quickly，recognise problematic programming language features，and avoid their（mis）use．

Relationship to other courses

Summary

－Compiling Techniques
－covers complementary aspects of PL implementation， such as lexical analysis and parsing．
－also covers compilation of imperative programs to machine code
－Introduction to Theoretical Computer Science
－covers formal models of computation（Turing machines， etc．）
－as well as some λ－calculus and type theory
－In this course，we focus on interpreters，operational semantics，and types to understand programming language features．
－There should be relatively little overlap with CT or ITCS．
－Today we covered：
－Background and motivation for the course
－Course administration
－Outline of course topics
－Next time：
－Concrete and abstract syntax
－Programming with abstract syntax trees（ASTs）

Today

Elements of Programming Languages

Lecture 1: Abstract syntax

James Cheney
University of Edinburgh

We will introduce some basic tools used throughout the course:

- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

$L_{\text {Arith }}$

- We will start out with a very simple (almost trivial) "programming language" called $\mathrm{L}_{\text {Arith }}$ to illustrate these concepts
- Namely, expressions with integers, + and \times
- Examples:
$\begin{array}{lll}1+2 & & ---> \\ 1+2 * 3 & -->7 \\ (1+2) & * 3 & -->\end{array}$
- Concrete syntax: the actual syntax of a programming language
- Specify using context-free grammars (or generalizations)
- Used in compiler/interpreter front-end, to decide how to interpret strings as programs
- Abstract syntax: the "essential" constructs of a programming language
- Specify using so-called Backus Naur Form (BNF) grammars
- Used in specifications and implementations to describe the abstract syntax trees of a language.
- Context-free grammar giving concrete syntax for expressions

```
E }->E\mathrm{ PLUS F|
F}->F\mathrm{ TIMES F| NUM | LPAREN E RPAREN
```

- Needs to handle precedence, parentheses, etc.
- Tokenization ($+\rightarrow$ PLUS, etc.), comments, whitespace usually handled by a separate stage
- BNF grammar giving abstract syntax for expressions

$$
\text { Expr } \ni e::=e_{1}+e_{2}\left|e_{1} \times e_{2}\right| n \in \mathbb{N}
$$

- This says: there are three kinds of expressions
- Additions $e_{1}+e_{2}$, where two expressions are combined with the + operator
- Multiplications $e_{1} \times e_{2}$, where two expressions are combined with the \times operator
- Numbers $n \in \mathbb{N}$
- Much like CFG rules, we can "derive" more complex expressions:

$$
e \rightarrow e_{1}+e_{2} \rightarrow 3+e_{2} \rightarrow 3+\left(e_{3} \times e_{4}\right) \rightarrow \cdots
$$

Concrete vs. abstract syntax Abstract syntax trees

BNF conventions

- We will usually use BNF-style rules to define abstract syntax trees
- and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.
- Convention: the subscripts on occurrences of e on the RHS don't affect the meaning, just for readability
- Convention: we will freely use parentheses in abstract syntax notation to disambiguate
- e.g

$$
(1+2) \times 3 \quad \text { vs. } \quad 1+(2 \times 3)
$$

Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract syntax trees, for example:

These can be represented in a program as trees, or in other ways (which we will cover in due course)

ASTs in Java

- We will use several languages for examples throughout the course:
- Java: typed, object-oriented
- Python: untyped, object-oriented with some functional features
- Haskell: typed, functional
- Scala: typed, combines functional and OO features
- Sometimes others, to discuss specific features
- You do not need to already know all these languages!
- In Java ASTs can be defined using a class hierarchy:

```
abstract class Expr {}
class Num extends Expr {
    public int n;
    Num(int _n) {
        n = _n;
    }
}
```


ASTs in Java

- In Java ASTs can be defined using a class hierarchy:

```
class Plus extends Expr {
    public Expr e1;
    public Expr e2;
    Plus(Expr _e1, Expr _e2) {
        e1 = _e1;
        e2 = _e2;
    }
}
class Times extends Expr {... // similar
}
```


ASTs in Java

- Traverse ASTs by adding a method to each class:

```
abstract class Expr {
    abstract public int size();
}
class Num extends Expr { ...
    public int size() { return 1;}
}
class Plus extends Expr { ...
    public int size() {
        return e1.size(e1) + e2.size() + 1;
    }
}
class Times extends Expr {... // similar
}
```


ASTs in Python

ASTs in Haskell

- Python is similar, but shorter (no types):

```
class Expr:
    pass # "abstract"
class Num(Expr):
    def __init__(self,n):
        self.n = n
    def size(self): return 1
class Plus(Expr):
    def __init__(self,e1,e2):
        self.e1 = e1
        self.e2 = e2
    def size(self):
        return self.e1.size() + self.e2.size() + 1
class Times(Expr): # similar...
```

ASTs in Scala

- In Scala, can define ASTs conveniently using case classes: abstract class Expr
case class Num(n: Integer) extends Expr
case class Plus(e1: Expr, e2: Expr) extends Expr case class Times(e1: Expr, e2: Expr) extends Expr
- Again one can easily write functions to traverse them using pattern matching: def size (e: Expr): Int = e match \{
case $\operatorname{Num}(n)=>1$
case Plus (e1,e2) =>
size (e1) + size(e2) + 1
case Times (e1,e2) => size (e1) + size (e2) + 1
\}
- In Haskell, ASTs are easily defined as datatypes: data Expr = Num Integer
| Plus Expr Expr
| Times Expr Expr
- Likewise one can easily write functions to traverse them:

```
size :: Expr -> Integer
size (Num n) = 1
size (Plus e1 e2) =
    (size e1) + (size e2) + 1
size (Times e1 e2) =
    (size e1) + (size e2) + 1
```


Precedence, Parentheses and Parsimony

The three most important reasoning techniques

- Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end
- Some languages, notably LISP/Scheme/Racket, eschew infix notation.
- All programs are essentially so-called S-Expressions:

$$
s::=a \mid\left(a s_{1} \cdots s_{n}\right)
$$

so their concrete syntax is very close to abstract syntax.

- For example

```
1 + 2 ---> (+ 1 2)
1 + 2 * 3 ---> (+ 1 (* 2 3))
(1 + 2) * 3 ---> (* (+ 1 2) 3)
```

- The three most important reasoning techniques for programming languages are:
- (Mathematical) induction
- (Structural) induction
- (Rule) induction
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
- (Mathematical) induction
- (over \mathbb{N})
- (Structural) induction
- (Rule) induction
- We will briefly review the first and present structural induction.
- We will cover rule induction later.
- The three most important reasoning techniques for programming languages are:
- (Mathematical) induction
- (over \mathbb{N})
- (Structural) induction
- (over ASTs)
- (Rule) induction
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
- (Mathematical) induction
- (over \mathbb{N})
- (Structural) induction
- (over ASTs)
- (Rule) induction
- (over derivations)
- We will briefly review the first and present structural induction.
- Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

- $P(0)$ holds
- for any $n \in \mathbb{N}$, if $P(n)$ holds then $P(n+1)$ also holds

Then $P(n)$ holds for all $n \in \mathbb{N}$.

- We will cover rule induction later.

Induction over expressions

- A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

- $P(n)$ holds for every number $n \in \mathbb{N}$
- for any expressions e_{1}, e_{2}, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ holds then $P\left(e_{1}+e_{2}\right)$ also holds
- for any expressions e_{1}, e_{2}, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ holds then $P\left(e_{1} \times e_{2}\right)$ also holds
Then $P(e)$ holds for all expressions e.
- Note that we are performing induction over abstract syntax trees, not numbers!

Proof of expression induction principle

Define the size of an expression in the obvious way:

$$
\begin{aligned}
\operatorname{size}(n) & =1 \\
\operatorname{size}\left(e_{1}+e_{2}\right) & =\operatorname{size}\left(e_{1}\right)+\operatorname{size}\left(e_{2}\right)+1 \\
\operatorname{size}\left(e_{1} \times e_{2}\right) & =\operatorname{size}\left(e_{1}\right)+\operatorname{size}\left(e_{2}\right)+1
\end{aligned}
$$

Given $P(-)$ satisfying the assumptions of expression induction, we prove the property

$$
Q(n)=\text { for all } e \text { with } \operatorname{size}(e)<n \text { we have } P(e)
$$

Since any expression e has a finite size, $P(e)$ holds for any expression.

Proof

We prove that $Q(n)$ holds for all n by induction on n :

- The base case $n=0$ is vacuous
- For $n+1$, then assume $Q(n)$ holds and consider any e with $\operatorname{size}(e)<n+1$. Then there are three cases:
- if $e=m \in \mathbb{N}$ then $P(e)$ holds by part 1 of expression induction principle
- if $e=e_{1}+e_{2}$ then $\operatorname{size}\left(e_{1}\right)<\operatorname{size}(e) \leq n$ and similarly for $\operatorname{size}\left(e_{2}\right)<\operatorname{size}(e) \leq n$. So, by induction, $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ hold, and by part 2 of expression induction principle $P(e)$ holds.
- if $e=e_{1} \times e_{2}$, the same reasoning applies.
- We covered:
- Concrete vs. Abstract syntax
- Abstract syntax trees
- Abstract syntax of $\mathrm{L}_{\text {Arith }}$ in several languages
- Structural induction over syntax trees
- This might seem like a lot to absorb, but don't worry! We will revisit and reinforce these concepts throughout the course.
- Next time:
- Evaluation
- A simple interpreter
- Operational semantics rules

Elements of Programming Languages

Lecture 2: Evaluation

James Cheney
University of Edinburgh

September 27, 2016

- Last time
- Concrete vs. abstract syntax
- Programming with abstract syntax trees
- A taste of induction over expressions
- Today:
- Evaluation
- A simple interpreter
- Modeling evaluation using rules

$$
\text { Expr } \ni e::=e_{1}+e_{2}\left|e_{1} \times e_{2}\right| n \in \mathbb{N}
$$

- Some expressions, like 1,2,3, are special
- They have no remaining "computation" to do
- We call such expressions values.
- We can define a BNF grammar rule for values:

$$
\text { Value } \ni v::=n \in \mathbb{N}
$$

- Given an expression e, what is its value?
- If $e=n$, a number, then it is already a value.
- If $e=e_{1}+e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then add v_{1} and v_{2}, the result is the value of e.
- If $e=e_{1} \times e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then multiply v_{1} and v_{2}, the result is the value of e.

Values

- Recall $L_{\text {Arith }}$ expressions:
Evaluation, informally

Evaluation, in Scala

Example

- If $e=n$, a number, then it is already a value.
- If $e=e_{1}+e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then add v_{1} and v_{2}, the result is the value of e.
- If $e=e_{1} \times e_{2}$, evaluate e_{1} to v_{1} and e_{2} to v_{2}. Then multiply v_{1} and v_{2}, the result is the value of e.

```
def eval(e: Expr): Int = e match {
    case Num(n) => n
    case Plus(e1,e2) => eval(e1) + eval(e2)
    case Times(e1,e2) => eval(e1) * eval(e2)
}
```


Example

$$
\operatorname{eval}(1)+(e v a l(2) \times \operatorname{eval}(3))=1+(2 \times 3)=1+6=7
$$

Expression evaluation, more formally

- To specify and reason about evaluation, we use a evaluation judgment.

Definition (Evaluation judgment)

Given expression e and value v, we say v is the value of e if evaluating e results in v, and we write $e \Downarrow v$ to indicate this.

- (A judgment is a relation between abstract syntax trees.)
- Examples:

$$
1+2 \Downarrow 3 \quad 1+2 \times 3 \Downarrow 7 \quad(1+2) \times 3 \Downarrow 9
$$

Evaluation of Values

Evaluation of Addition

- A value is already evaluated. So, for any v, we have $v \Downarrow v$.
- We can express the fact that $v \Downarrow v$ always holds (for any v) as follows:

$$
\overline{v \Downarrow v}
$$

- This is a rule that says that v evaluates to v always (no preconditions)
So, for example, we can derive:

$$
\overline{0 \Downarrow 0} \quad \overline{1 \Downarrow 1}
$$

Expression evaluation: Summary

Multiplication can be handled exactly like addition.

- We will define the meaning of $L_{\text {Arith }}$ expressions using the following rules:

$e \Downarrow v$

$$
\overline{v \Downarrow v} \quad \frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N} v_{2}} \quad \frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1} \times e_{2} \Downarrow v_{1} \times \mathbb{N} v_{2}}
$$

- This evaluation judgment is an example of big-step semantics (or natural semantics)
- so-called because we evaluate the whole expression "in one step"
- How to evaluate expression $e_{1}+e_{2}$?
- Suppose we know that $e_{1} \Downarrow v_{1}$ and $e_{2} \Downarrow v_{2}$.
- Then the value of $e_{1}+e_{2}$ is the number we get by adding numbers v_{1} and v_{2}.
- We can express this as follows:

$$
\frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N} v_{2}}
$$

- This is a rule that says that $e_{1}+e_{2}$ evaluates to $v_{1}+_{\mathbb{N}} v_{2}$ provided e_{1} evaluates to v_{1} and e_{2} evaluates to v_{2}
- Note that we write $+_{\mathbb{N}}$ for the mathematical function that adds two numbers, to avoid confusion with the abstract syntax tree $v_{1}+v_{2}$.

Examples

- We can use these rules to derive evaluation judgments for complex expressions:

$$
\overline{\frac{1 \Downarrow 1}{1+2 \Downarrow 3}} \overline{2 \Downarrow 2} \frac{\overline{1 \Downarrow 1} \frac{\overline{2 \Downarrow 2} \overline{3 \Downarrow 3}}{2 * 3 \Downarrow 6}}{\frac{1 \Downarrow 1}{2 \Downarrow(2 * 3) \Downarrow 7}} \frac{\frac{1 \Downarrow 2}{1+2 \Downarrow 3}}{(1+2) * 3 \Downarrow 9}
$$

- These figures are derivation trees showing how we can derive a conclusion from axioms
- The rules govern how we can construct derivation trees.
- A leaf node must match a rule with no preconditions
- Other nodes must match rules with preconditions. (Order matters.)
- Note that derivation trees "grow up" (root is at the bottom)

Totality and Structural induction

- Question: Given any expression e, does it evaluate to a value?
- To answer this question, we can use structural induction:

Induction on structure of expressions
Given a property P of expressions, if:

- $P(n)$ holds for every number $n \in \mathbb{N}$
- for any expressions e_{1}, e_{2}, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ holds then $P\left(e_{1}+e_{2}\right)$ also holds
- for any expressions e_{1}, e_{2}, if $P\left(e_{1}\right)$ and $P\left(e_{2}\right)$ holds then $P\left(e_{1} \times e_{2}\right)$ also holds
- Let's illustrate with an example

Theorem

If e is an expression, then there exists $v \in \mathbb{N}$ such that $e \Downarrow v$ holds.

Proof: Base case.

If $e=n$ then e is already a value. Take $v=n$, then we can derive

$$
\overline{e \Downarrow n}
$$

Then $P(e)$ holds for all expressions e.

Proof by structural induction

Proof: Inductive case 2.

If $e=e_{1} \times e_{2}$ then suppose $e_{1} \Downarrow v_{1}$ and $e_{2} \Downarrow v_{2}$ for some v_{1}, v_{2}. Then we can use the rule:

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1} \times e_{2} \Downarrow v_{1} \times_{\mathbb{N}} v_{2}}
$$

to conclude that there exists $v=v_{1} \times_{\mathbb{N}} v_{2}$ such that $e \Downarrow v$ holds.

- This case is basically identical to case 1 (modulo + vs. \times).
- From now on we will typically skip over such "essentially identical" cases (but it is important to really check them).

We can also prove the uniqueness of the value of v by induction:

Theorem (Uniqueness of evaluation)
 If $e \Downarrow v$ and $e \Downarrow v^{\prime}$, then $v=v^{\prime}$.

Base case.
If $e=n$ then since $n \Downarrow v$ and $n \Downarrow v^{\prime}$ hold, the only way we could derive these judgments is for v, v^{\prime} to both equal n.

Inductive case.

If $e=e_{1}+e_{2}$ then the derivations must be of the form

$$
\frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N}_{2} v_{2}} \quad \frac{e_{1} \Downarrow v_{1}^{\prime} \quad e_{2} \Downarrow v_{2}^{\prime}}{e_{1}+e_{2} \Downarrow v_{1}^{\prime}+\mathbb{N}_{2} v_{2}^{\prime}}
$$

By induction, $e_{1} \Downarrow v_{1}$ and $e_{1} \Downarrow v_{1}^{\prime}$ implies $v_{1}=v_{1}^{\prime}$, and similarly for e_{2} so $v_{2}=v_{2}^{\prime}$. Therefore $v_{1}+\mathbb{N} v_{2}=v_{1}^{\prime}+\mathbb{N} v_{2}^{\prime}$.

- The proof for $e_{1} \times e_{2}$ is similar.

Totality, uniqueness, and correctness
 Summary

- The Scala interpreter code defined earlier says how to interpret a $L_{\text {Arith }}$ expression as a function
- The big-step rules, in contrast, specify the meaning of expressions as a relation.
- Nevertheless, totality and uniqueness guarantee that for each e there is a unique v such that $e \Downarrow v$
- In fact, $v=e v a l(e)$, that is:

Theorem (Interpreter Correctness)

For any $\mathrm{L}_{\text {Arith }}$ expression e, we have $e \Downarrow v$ if and only if $v=e v a l(e)$.

- In this lecture, we've covered:
- A simple interpreter
- Evaluation via rules
- Totality and uniqueness (via structural induction)
- all for the simple language $L_{\text {Arith }}$
- Next time:
- Booleans, equality, conditionals
- Types
- Proof: induction on e.

Boolean expressions

Elements of Programming Languages

Lecture 3: Booleans, conditionals, and types

James Cheney
University of Edinburgh

September 30, 2016

- So far we've considered only a trivial arithmetic language $L_{\text {Arith }}$
- Let's extend $L_{\text {Arith }}$ with equality tests and Boolean true/false values:

$$
e::=\cdots|b \in \mathbb{B}| e_{1}==e_{2}
$$

- We write \mathbb{B} for the set of Boolean values \{true,false\}
- Basic idea: $e_{1}==e_{2}$ should evaluate to true if e_{1} and e_{2} have equal values, false otherwise

What use is this?

- Examples:
- $2+2==4$ should evaluate to true
- $3 \times 3+4 \times 4==5 \times 5$ should evaluate to true
- $3 \times 3==4 \times 7$ should evaluate to false
- How about true $==$ true? Or false $==$ true?
- So far, there's not much we can do.
- We can evaluate a numerical expression for its value, or a Boolean equality expression to true or false
- We can't write an expression whose result depends on evaluating a comparison.
- We lack an "if then else" (conditional) operation.
- We also can't "and", "or" or negate Boolean values.

Conditionals

- Let's also add an "if then else" operation:

$$
e::=\cdots|b \in \mathbb{B}| e_{1}==e_{2} \mid \text { if } e \text { then } e_{1} \text { else } e_{2}
$$

- We define $L_{\text {If }}$ as the extension of $L_{\text {Arith }}$ with booleans, equality and conditionals.
- Examples:
- if true then 1 else 2 should evaluate to 1
- if $1+1==2$ then 3 else 4 should evaluate to 3
- if true then false else true should evaluate to false
- Note that if e then e_{1} else e_{2} is the first expression that makes nontrivial "choices" : whether to evaluate the first or second case.

Extending evaluation

Extending the interpreter

- We consider the Boolean values true and false to be values:

$$
v::=n \in \mathbb{N} \mid b \in \mathbb{B}
$$

- and we add the following evaluation rules:

$e \Downarrow v$ for $L_{\text {If }}$

$$
\begin{array}{cc}
\frac{e_{1} \Downarrow v \quad e_{2} \Downarrow v}{e_{1}==e_{2} \Downarrow \operatorname{true}} & \frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2} \quad v_{1} \neq v_{2}}{e_{1}==e_{2} \Downarrow \text { false }} \\
\frac{e \Downarrow \text { true } e_{1} \Downarrow v_{1}}{\text { if } e \text { then } e_{1} \text { else } e_{2} \Downarrow v_{1}} & \frac{e \Downarrow \text { false } e_{2} \Downarrow v_{2}}{\text { if e then } e_{1} \text { else } e_{2} \Downarrow v_{2}}
\end{array}
$$

- To interpret $L_{\text {If }}$, we need new expression forms:

```
case class Bool(n: Boolean) extends Expr
case class Eq(e1: Expr, e2:Expr) extends Expr
case class IfThenElse(e: Expr, e1: Expr, e2: Expr)
    extends Expr
```

- and different types of values (not just Ints):

```
abstract class Value
case class NumV(n: Int) extends Value
case class BoolV(b: Boolean) extends Value
```

- (Technically, we could encode booleans as integers, but in general we will want to separate out the kinds of values.)

Extending the interpreter

```
// helpers
def add(v1: Value, v2: Value): Value =
        (v1,v2) match {
            case (NumV(v1), NumV(v2)) => NumV (v1 + v2)
        }
def mult(v1: Value, v2: Value): Value = ...
def eval(e: Expr): Value = e match {
    // Arithmetic
    case Num(n) => NumV(n)
    case Plus(e1,e2) => add(eval(e1),eval(e2))
    case Times(e1,e2) => mult(eval(e1),eval(e2))
    ...}
```


Extending the interpreter

```
// helper
def eq(v1: Value, v2: Value): Value = (v1,v2) match {
        case (NumV(n1), NumV(n2)) => BoolV(n1 == n2)
        case (BoolV(b1), BoolV(b2)) => BoolV(b1 == b2)
}
def eval(e: Expr): Value = e match {
    case Bool(b) => BoolV(b)
    case Eq(e1,e2) => eq (eval(e1), eval(e2))
    case IfThenElse(e,e1,e2) => eval(e) match {
        case BoolV(true) => eval(e1)
        case BoolV(false) => eval(e2)
    }
}
```


Aside: Other Boolean operations

Aside: Shortcut operations

- We can add Boolean and, or and not operations as follows:

$$
e::=\cdots\left|e_{1} \wedge e_{2}\right| e_{1} \vee e_{2} \mid \neg(e)
$$

- with evaluation rules:

$$
\frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1} \wedge e_{2} \Downarrow v_{1} \wedge_{\mathbb{B}} v_{2}} \quad \frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1} \vee e_{2} \Downarrow v_{1} \vee_{\mathbb{B}} v_{2}}
$$

- where again, $\wedge_{\mathbb{B}}$ and $\bigvee_{\mathbb{B}}$ are the mathematical "and" and "or" operations
- These are definable in $L_{\text {If }}$, so we will leave them out to avoid clutter.
- Many languages (e.g. C, Java) offer shortcut versions of "and" and "or":

$$
e::=\cdots\left|e_{1} \& \& e_{2}\right| e_{1}| | e_{2}
$$

- $e_{1} \& \& e_{2}$ stops early if e_{1} is false (since e_{2} 's value then doesn't matter).
- $e_{1} \| e_{2}$ stops early if e_{1} is true (since e_{2} 's value then doesn't matter).
- We can model their semantics using rules like this:

$\frac{e_{1} \Downarrow \text { false }}{e_{1} \& \& e_{2} \Downarrow \text { false }}$		
$\frac{e_{1} \Downarrow \text { true }}{e_{1} \\| e_{2} \Downarrow \text { true }}$	$\frac{e_{1} \Downarrow \text { true } e_{2} \Downarrow v_{2}}{e_{1} \& \& e_{2} \Downarrow v_{2}}$	
$e_{1} \\| e_{2} \Downarrow v_{2}$		

What else can we do?

- We can also do strange things like this:

$$
e_{1}=1+(2==3)
$$

- Or this:

$$
e_{2}=\text { if } 1 \text { then } 2 \text { else } 3
$$

What should these expressions evaluate to?

- There is no v such that $e_{1} \Downarrow v$ or $e_{2} \Downarrow v$!
- the Totality property for $\mathrm{L}_{\text {Arith }}$ fails, for L_{If} !
- If we try to run the interpreter: we just get an error
- In some languages (notably C, Java), there are built-in conversion rules
- For example, "if an integer is needed and a boolean is available, convert true to 1 and false to $0 "$
- Likewise, "if a boolean is needed and an integer is available, convert 0 to false and other values to true"
- LISP family languages have a similar convention: if we need a Boolean value, nil stands for "false" and any other value is treated as "true"
- Conversion rules are convenient but can make programs less predictable
- We will avoid them for now, but consider principled ways of providing this convenience later on.
- Should programs like:

$$
1+(2==3) \quad \text { if } 1 \text { then } 2 \text { else } 3
$$

even be allowed?

- Idea: use a type system to define a subset of "well-formed" programs
- Well-formed means (at least) that at run time:
- arguments to arithmetic operations (and equality tests) should be numeric values
- arguments to conditional tests should be Boolean values
- Consider an expression e
- If $e=n$, then e has type "integer"
- If $e=e_{1}+e_{2}$, then e_{1} and e_{2} must have type "integer".

If so, e has type "integer" also, else error.

- If $e=e_{1} \times e_{2}$, then e_{1} and e_{2} must have type "integer". If so, e has type "integer" also, else error.

Typing rules, informally: booleans, equality and
 Concise notation for typing rules

 conditionals- Consider an expression e
- If $e=$ true or false, then e has type "boolean"
- If $e=e_{1}==e_{2}$, then e_{1} and e_{2} must have the same type. If so, e has type "boolean", else error.
- If $e=$ if e_{0} then e_{1} else e_{2}, then e_{0} must have type "boolean", and e_{1} and e_{2} must have the same type. If so, then e has the same type as e_{1} and e_{2}, else error.
- Note 1: Equality arguments have the same (unknown) type.
- Note 2: Conditional branches have the same (unknown) type. This type determines the type of the whole conditional expression.
- We can define the possible types using a BNF grammar, as follows:

$$
\text { Type } \ni \tau::=\text { int } \mid \text { bool }
$$

For now, we will consider only two possible types, "integer" (int) and "boolean" (bool).

- We can also use rules to describe the types of expressions:

Definition (Typing judgment $\vdash e: \tau$)

We use the notation $\vdash e: \tau$ to say that e is a well-formed term of type τ (or "e has type τ ").

Typing rules, more formally: arithmetic

Typing rules, more formally: equality and conditionals

- If $e=n$, then e has type "integer"
- If $e=e_{1}+e_{2}$, then e_{1} and e_{2} must have type "integer". If so, e has type "integer" also, else error.
- If $e=e_{1} \times e_{2}$, then e_{1} and e_{2} must have type "integer". If so, e has type "integer" also, else error.

$$
\begin{aligned}
& \qquad-e: \tau \text { for } L_{\text {Arith }} \\
& \qquad \begin{array}{l}
\frac{n \in \mathbb{N}}{\vdash n: \text { int }} \quad \frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1}+e_{2}: \text { int }} \\
\\
\\
\frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1} \times e_{2}: \text { int }}
\end{array} \\
&
\end{aligned}
$$

Typing judgments: examples

- We indicate that the types of subexpressions of $==$ must
- Similarly, we indicate that the result of a conditional has the same type as the two branches using the same τ for all three

$$
\begin{gathered}
\frac{b \in \mathbb{B}}{\vdash b: \text { bool }} \quad \frac{\vdash e_{1}: \tau \quad \vdash e_{2}: \tau}{\vdash e_{1}==e_{2}: \text { bool }} \\
\frac{\vdash e: \text { bool } \vdash e_{1}: \tau \quad \vdash e_{2}: \tau}{\vdash \text { if e then } e_{1} \text { else } e_{2}: \tau}
\end{gathered}
$$

$\vdash e: \tau$ for $L_{\text {If }}$

be equal by using the same τ

Typing judgments: non-examples

$$
\begin{gathered}
\frac{\overline{\vdash 1: \text { int }} \overline{\vdash 2: \text { int }}}{\frac{\vdash 1+2: \text { int }}{\vdash 1+2==4: \text { bool int }}} \\
\vdots \\
\frac{\vdash 1+2==4: \text { bool } \overline{\vdash 42: \text { int }} \overline{\vdash 17: \text { int }}}{\vdash \text { if } 1+2==4 \text { then } 42 \text { else } 17: \text { int }}
\end{gathered}
$$

But we also want some things not to typecheck:

$$
\begin{gathered}
\vdash 1==\text { true }: \tau \\
\vdash \text { if } 42 \text { then } e_{1} \text { else } e_{2}: \tau
\end{gathered}
$$

These judgments do not hold for any e_{1}, e_{2}, τ.

- The point of the typing judgment is to ensure soundness: if an expression is well-typed, then it evaluates "correctly"
- That is, evaluation is well-behaved on well-typed programs.

Theorem (Type soundness for $\mathrm{L}_{\text {If }}$)

If $\vdash e: \tau$ then $e \Downarrow v$ and $\vdash v: \tau$.

- For a language like L_{If}, soundness is fairly easy to prove by induction on expressions. We'll present soundness for more realistic languages in detail later.

Summary

- Boolean values, equality tests and conditionals
- Extending the interpreter to handle them
- Typing rules
- Next time:
- Variables and let-binding
- Substitution, environments and type contexts
- Some languages proudly advertise that they are "static" or "dynamic"
- Static typing:
- not all expressions are well-formed; some sensible programs are not allowed
- types can be used to catch errors, improve performance
- Dynamic typing:
- all expressions are well-formed; any program can be run
- type errors arise dynamically; higher overhead for tagging and checking
- These are rarely-realized extremes: most "statically" typed languages handle some errors dynamically
- In contrast, any "dynamically" typed language can be thought of as a statically typed one with just one type.

Variables

Elements of Programming Languages

Lecture 4：Variables，scope，and substitution

James Cheney
University of Edinburgh

October 4， 2016
－A variable is a symbol that can＇stand for＇a value．
－Often written x, y, z, \ldots ．
－Let＇s extend $\mathrm{L}_{\text {If }}$ with variables：

$$
\begin{aligned}
e & ::=n \in \mathbb{N}\left|e_{1}+e_{2}\right| e_{1} \times e_{2} \\
& \quad b \in \mathbb{B}\left|e_{1}==e_{2}\right| \text { if } e \text { then } e_{1} \text { else } e_{2}
\end{aligned}
$$

－Here，x is shorthand for an arbitrary variable in Var，the set of expression variables
－Let＇s call this language $L_{V a r}$

Aside：Operators，operators everywhere

－We have now considered several binary operators
－as well as a unary one（ \neg ）
－It is tiresome to write their syntax，evaluation rules，and typing rules explicitly，every time we add to the language
－We will sometimes represent such operations using schematic syntax $e_{1} \oplus e_{2}$ and rules：

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{e_{1} \oplus e_{2} \Downarrow v_{1} \oplus_{\mathbb{A}} v_{2}} \quad \frac{\vdash e_{1}: \tau^{\prime} \quad \vdash e_{2}: \tau^{\prime} \oplus: \tau^{\prime} \times \tau^{\prime} \rightarrow \tau}{\vdash e_{1} \oplus e_{2}: \tau}
$$

－where $\oplus: \tau^{\prime} \times \tau^{\prime} \rightarrow \tau$ means that operator \oplus takes arguments $\tau^{\prime}, \tau^{\prime}$ and yields result of type τ
－（e．g．+ ：int \times int \rightarrow int，$==: \tau \times \tau \rightarrow$ bool $)$
－We said＂A variable can＇stand for＇a value．＂
－What does this mean precisely？
－Suppose we have $x+1$ and we want x to＂stand for＂ 42 ．
－We should be able to replace x everywhere in $x+1$ with 42：

$$
x+1 \rightsquigarrow 42+1
$$

－Similarly，if x＂stands for＂ 3 then

```
if x== y then x else y}\rightsquigarrow\mathrm{ if 3== y then 3 else y
```

```
if x== y then x else y}\rightsquigarrow\mathrm{ if 3== y then 3 else y
```

- Let's introduce a notation for this substitution operation:

Definition (Substitution)

Given e, x, v, the substitution of v for x in e is an expression written $e[v / x]$.

- For $L_{\text {Var }}$, define substitution as follows:

$$
\begin{aligned}
& v_{0}[v / x]= v_{0} \\
& x[v / x]=v \\
& y[v / x]=y(x \neq y) \\
&\left(e_{1} \oplus e_{2}\right)[v / x]= e_{1}[v / x] \oplus e_{2}[v / x] \\
&\text { if } \left.e \text { then } e_{1} \text { else } e_{2}\right)[v / x]= \text { if } e[v / x] \text { then } e_{1}[v / x] \\
& \text { else } e_{2}[v / x]
\end{aligned}
$$

- As we all know from programming, we can reuse variable names:

```
def foo(x: Int) = x + 1
def bar(x: Int) = x * x
```

- The occurrences of x in foo have nothing to do with those in bar
- Moreover the following code is equivalent (since y is not already in use in foo or bar):

```
def foo(x: Int) = x + 1
def bar(y: Int) = y * y
```

Scope

Scope, Binding and Bound Variables

- Certain occurrences of variables are called binding
- Again, consider

```
def foo(x: Int) = x + 1
def bar(y: Int) = y * y
```

- The occurrences of x and y on the left-hand side of the definitions are binding
- Binding occurrences define scopes: the occurrences of x and y on the right-hand side are bound
- Any variables not in scope of a binder are called free
- Key idea: Renaming all binding and bound occurrences in a scope consistently (avoiding name clashes) should not affect meaning
- The terms static and dynamic scope are sometimes used.
- In static scope, the scope and binding occurrences of all variables can be determined from the program text, without actually running the program.
- In dynamic scope, this is not necessarily the case: the scope of a variable can depend on the context in which it is evaluated at run time.
- We will have more to say about this later when we cover functions
- but for now, the short version is: Static scope good, dynamic scope bad.
- For now, we consider a very basic form of scope: let-binding.

$$
e::=\cdots|x| \text { let } x=e_{1} \text { in } e_{2}
$$

- We define $L_{\text {Let }}$ to be $L_{\text {If }}$ extended with variables and let.
- In an expression of the form let $x=e_{1}$ in e_{2}, we say that x is bound in e_{2}
- Intuition: let-binding allows us to use a variable x as an abbreviation for some other expression:

$$
\text { let } x=1+2 \text { in } 3 \times x \rightsquigarrow 3 \times(1+2)
$$

Freshness

- We wish to consider expressions equivalent if they have the same binding structure
- We can rename bound names to get equivalent expressions:
let $x=y+z$ in $x==w \equiv$ let $u=y+z$ in $u==w$
- But some renamings change the binding structure:
let $x=y+z$ in $x==w \not \equiv$ let $w=y+z$ in $w==w$
- Intuition: Renaming to u is fine, because u is not already "in use".
- But renaming to w changes the binding structure, since w was already "in use".
- We say that a variable x is fresh for an expression e if there are no free occurrences of x in e.
- We can define this using rules as follows:

$x \# e$

$$
\begin{gathered}
\overline{x \# v} \quad \frac{x \neq y}{x \# y} \frac{x \# e_{1} \quad x \# e_{2}}{x \# e_{1} \oplus e_{2}} \quad \frac{x \# e \quad x \# e_{1} \quad x \# e_{2}}{x \# \text { if e then } e_{1} \text { else } e_{2}} \\
\frac{x \# e_{1}}{x \# \text { let } x=e_{1} \text { in } e_{2}} \quad \frac{x \neq y \quad x \# e_{1} \quad x \# e_{2}}{x \# \text { let } y=e_{1} \text { in } e_{2}}
\end{gathered}
$$

- Examples:

$$
x \# \text { true } \quad x \# y \quad x \# \text { let } x=1 \text { in } x
$$

- We will also use the following swapping operation to rename variables:

$$
\begin{aligned}
& x(y \leftrightarrow z)= \begin{cases}y & \text { if } x=z \\
z & \text { if } x=y \\
x & \text { otherwise }\end{cases} \\
& v(y \leftrightarrow z)=v
\end{aligned} \quad \begin{aligned}
\left(e_{1} \oplus e_{2}\right)(y \leftrightarrow z)= & e_{1}(y \leftrightarrow z) \oplus e_{2}(y \leftrightarrow z) \\
\left(\text { if } e \text { then } e_{1} \text { else } e_{2}\right)(y \leftrightarrow z)= & \text { if } e(y \leftrightarrow z) \text { then } e_{1}(y \leftrightarrow z) \\
& \text { else } e_{2}(y \leftrightarrow z) \\
\left(\text { let } x=e_{1} \text { in } e_{2}\right)(y \leftrightarrow z)= & \text { let } x(y \leftrightarrow z)=e_{1}(y \leftrightarrow z) \\
& \text { in } e_{2}(y \leftrightarrow z)
\end{aligned}
$$

Example:

$$
(\text { let } x=y \text { in } x+z)(x \leftrightarrow z)=\text { let } z=y \text { in } z+x
$$

- We can now define "consistent renaming".
- Suppose $y \# e_{2}$. Then we can rename a let-expression as follows:

$$
\text { let } x=e_{1} \text { in } e_{2} \rightsquigarrow_{\alpha} \text { let } y=e_{1} \text { in } e_{2}(x \leftrightarrow y)
$$

- This is called alpha-conversion.
- Two expressions are alpha-equivalent if we can convert one to the other using alpha-conversions.

Types and variables

- Examples:

$$
\begin{array}{ll}
& \text { let } x=y+z \text { in } x==w \\
\rightsquigarrow \alpha & \text { let } u=y+z \text { in }(x==w)(x \leftrightarrow u) \\
= & \text { let } u=y+z \text { in } u(x \leftrightarrow u)==w(x \leftrightarrow u) \\
= & \text { let } u=y+z \text { in } u==w
\end{array}
$$

since $u \#(x==w)$.

- But
let $x=y+z$ in $x==w \not \psi_{\alpha}$ let $w=y+z$ in $w==w$
because w already appears in $x==w$.
- Once we add variables to our language, how does that affect typing?
- Consider

$$
\text { let } x=e_{1} \text { in } e_{2}
$$

When is this well-formed? What type does it have?

- Consider a variable on its own: what type does it have?
- Different occurrences of the same variable in different scopes could have different types.
- We need a way to keep track of the types of variables

Types for variables and let, informally

- Suppose we have a way of keeping track of the types of variables (say, some kind of map or table)
- When we see a variable x, look up its type in the map.
- When we see a let $x=e_{1}$ in e_{2}, find out the type of e_{1}. Suppose that type is τ_{1}. Add the information that x has type τ_{1} to the map, and check e_{2} using the augmented map.
- Note: The local information about x 's type should not persist beyond typechecking its scope e_{2}.

Types for variables and let, informally

- For example:

$$
\text { let } x=1 \text { in } x+1
$$

is well-formed: we know that x must be an int since it is set equal to 1 , and then $x+1$ is well-formed because x is an int and 1 is an int.

- On the other hand,

$$
\text { let } x=1 \text { in if } x \text { then } 42 \text { else } 17
$$

is not well-formed: we again know that x must be an int while checking if x then 42 else 17, but then when we check that the conditional's test x is a bool, we find that it is actually an int.

Type Environments

- We write 「 to denote a type environment, or a finite map from variable names to types, often written as follows:

$$
\left\ulcorner::=x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right.
$$

- In Scala, we can use the built-in type

ListMap [Variable,Type] for this.

- hey, maybe that's why the Lab has all that stuff about ListMaps!
- Moreover, we write $\Gamma(x)$ for the type of x according to Γ and $\Gamma, x: \tau$ to indicate extending Γ with the mapping x to τ.
- We now generalize the ideal of well-formedness:

Definition (Well-formedness in a context)

We write $\Gamma \vdash e: \tau$ to indicate that e is well-formed at type τ (or just "has type τ ") in context Γ.

- The rules for variables and let-binding are as follows:

$\Gamma \vdash e: \tau$ for $L_{\text {Let }}$

$\frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \quad \frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}}{\Gamma \vdash \operatorname{let} x=e_{1} \text { in } e_{2}: \tau_{2}}$

Types for variables and let, formally

- We also need to generalize the $L_{\text {If }}$ rules to allow contexts:

- This is straightforward: we just add 「 everywhere.
- The previous rules are special cases where Γ is empty.

Examples, revisited

We can now typecheck as follows:
$\frac{\overline{\vdash 1: \text { int }} \frac{x: \text { int } \vdash x: \text { int }}{x: \text { int } \vdash 1: \text { int }}}{\vdash \text { let } x=1 \text { in } x+1: \text { int }}$

On the other hand:
is not derivable because the judgment x : int $\vdash x:$ bool isn't.

Evaluation for let and variables

- One approach: whenever we see let $x=e_{1}$ in e_{2},
(1) evaluate e_{1} to v_{1}
(2) replace x with v_{1} in e_{2} and evaluate that

$e \Downarrow v$ for $L_{\text {Let }}$

$$
\frac{\frac{e_{1} \Downarrow v_{1} \quad e_{2}\left[v_{1} / x\right] \Downarrow v_{2}}{\text { let } x=e_{1} \text { in } e_{2} \Downarrow v_{2}}}{}
$$

- Note: We always substitute values for variables, and do not need a rule for "evaluating" a variable
- This evaluation strategy is called eager, strict, or (for historical reasons) call-by-value
- This is a design choice. We will revisit this choice (and consider alternatives) later.

Substitution-based interpreter

```
type Variable = String
case class Var(x: Variable) extends Expr
case class Let(x: Variable, e1: Expr, e2: Expr)
    extends Expr
...
def eval(e: Expr): Value = e match {
    case Let(x,e1,e2) => {
        val v = eval(e1);
        val e2vx = subst(e2,v,x);
        eval(e2vx)
    }
```

- Note: No case for $\operatorname{Var}(\mathrm{x})$.
- Another common way to handle variables is to use an environment
- An environment σ is a partial function from variables to values (e.g. a Scala ListMap[Variable, Value]).
- We add σ as an argument to the evaluation judgment:

$\sigma, e \Downarrow v$

$$
\begin{gathered}
\overline{\sigma, v \Downarrow v} \quad \frac{\sigma, e_{1} \Downarrow v_{1} \quad \sigma, e_{2} \Downarrow v_{2}}{\sigma, e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N} v_{2}} \quad \frac{\sigma, e_{1} \Downarrow v_{1} \quad \sigma, e_{2} \Downarrow v_{2}}{\sigma, e_{1} \times e_{2} \Downarrow v_{1} \times_{\mathbb{N}} v_{2}} \\
\ldots \\
\frac{\sigma, e_{1} \Downarrow v_{1} \quad \sigma[x=v], e_{2} \Downarrow v_{2}}{\sigma, \text { let } x=e_{1} \text { in } e_{2} \Downarrow v_{2}} \quad \overline{\sigma, x \Downarrow \sigma(x)}
\end{gathered}
$$

- Assignment 2 will ask you to implement such an interpreter.
- Today we've covered:
- Variables that can be replaced with values
- Scope and binding, alpha-equivalence
- Let-binding and how it affects typing and semantics

Next time:

- Functions and function types
- Recursion

Elements of Programming Languages

Lecture 5：Functions and recursion

James Cheney
University of Edinburgh

October 7， 2016
－So far，we＇ve covered
－arithmetic
－booleans，conditionals（if then else）
－variables and simple binding（let）
－LLet allows us to compute values of expressions
－and use variables to store intermediate values
－but not to define computations on unknown values．
－That is，there is no feature analogous to Haskell＇s functions，Scala＇s def，or methods in Java．
－Today，we consider functions and recursion

Named functions

Examples

A simple way to add support for functions is as follows：$$
e::=\cdots|f(e)| \text { let fun } f(x: \tau)=e_{1} \text { in } e_{2}
$$

－Meaning：Define a function called f that takes an argument x and whose result is the expression e_{1} ．
－Make f available for use in e_{2} ．
－（That is，the scope of x is e_{1} ，and the scope of f is e_{2} ．）
－This is pretty limited：
－for now，we consider one－argument functions only．
－no recursion
－functions are not first－class＂values＂（e．g．can＇t pass a function as an argument to another）
－We can define a squaring function：

$$
\text { let fun square }(x: \text { int })=x \times x \text { in } \cdots
$$

－or（assuming inequality tests）absolute value：
let fun abs $(x$ ：int $)=$ if $x<0$ then $-x$ else x in \cdots

Types for named functions

Example

- We introduce a type constructor $\tau_{1} \rightarrow \tau_{2}$, meaning "the type of functions taking arguments in τ_{1} and returning $\tau_{2}{ }^{\prime \prime}$
- We can typecheck named functions as follows:

$$
\begin{gathered}
\frac{\Gamma, x: \tau_{1} \vdash e_{1}: \tau_{2} \quad \Gamma, f: \tau_{1} \rightarrow \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \text { let fun } f\left(x: \tau_{1}\right)=e_{1} \text { in } e_{2}: \tau} \\
\frac{\Gamma(f)=\tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e: \tau_{1}}{\Gamma \vdash f(e): \tau_{2}}
\end{gathered}
$$

- For convenience, we just use a single environment Γ for both variables and function names.

Typechecking of $a b s(-42)$

$$
\begin{aligned}
& \frac{\frac{\Gamma(x)=\text { int }}{\Gamma \vdash x: \text { int }}}{\Gamma \vdash 0: \text { int }} \frac{\frac{\Gamma \vdash x: \text { int }}{\Gamma \vdash 0: \text { bool }}}{\Gamma \vdash \text { if } x<0 \text { then }-x \text { else } x: \text { int }} \\
& \frac{\Gamma(x)=\text { int }}{\Gamma \vdash-x: \text { int }} \\
& \frac{\Gamma \vdash e_{a b s}: \text { int }}{\Gamma \vdash \text { let fun abs }(x: \text { int })=e_{a b s} \text { in } a b s(-42): \text { int }}
\end{aligned}
$$

$$
\text { where } e_{a b s}=\text { if } x<0 \text { then }-x \text { else } x \text { and } \Gamma=x: \text { int. }
$$

Semantics of named functions

- We can define rules for evaluating named functions as follows.
- First, let δ be an environment mapping function names f to their "definitions", which we'll write as $\langle x \Rightarrow e\rangle$.
- When we encounter a function definition, add it to δ.

$$
\frac{\delta\left[f \mapsto\left\langle x \Rightarrow e_{1}\right\rangle\right], e_{2} \Downarrow v}{\delta, \text { let fun } f(x: \tau)=e_{1} \text { in } e_{2} \Downarrow v}
$$

- When we encounter an application, look up the definition and evaluate the body with the argument value substituted for the argument:

$$
\frac{\delta, e_{0} \Downarrow v_{0} \quad \delta(f)=\langle x \Rightarrow e\rangle \quad \delta, e\left[v_{0} / x\right] \Downarrow v}{\delta, f\left(e_{0}\right) \Downarrow v}
$$

Examples

Evaluation of abs(-42)

$$
\frac{\delta,-42<0 \Downarrow \text { true } \quad \delta,-(-42) \Downarrow 42}{\delta, \text { if }-42<0 \text { then }-(-42) \text { else }-42 \Downarrow 42}
$$

$$
\begin{aligned}
& \frac{\delta,-42 \Downarrow-42 \quad \delta(a b s)=\left\langle x \Rightarrow e_{a b s}\right\rangle \quad \overline{\delta, e_{a b s}[-42 / x] \Downarrow 42}}{\delta, a b s(-42) \Downarrow 42} \\
& \frac{\text { let fun } a b s(x: \text { int })=e_{a b s} \text { in } a b s(-42) \Downarrow 42}{} \\
& \text { where } e_{a b s}=\text { if } x<0 \text { then }-x \text { else } x \text { and } \\
& \delta=\left[a b s \mapsto\left\langle x \Rightarrow e_{a b s}\right\rangle\right]
\end{aligned}
$$

Static vs. dynamic scope

Dynamic scope breaks type soundness

- Function bodies can contain free variables. Consider:

$$
\begin{aligned}
& \text { let } x=1 \text { in } \\
& \text { let fun } f(y: \text { int })=x+y \text { in } \\
& \text { let } x=10 \text { in } f(3)
\end{aligned}
$$

- Here, x is bound to 1 at the time f is defined, but re-bound to 10 when by the time f is called.
- There are two reasonable-seeming result values, depending on which x is in scope:
- Static scope uses the binding $x=1$ present when f is defined, so we get $1+3=4$.
- Dynamic scope uses the binding $x=10$ present when f is used, so we get $10+3=13$.
- Even worse, what if we do this:

$$
\begin{aligned}
& \text { let } x=1 \text { in } \\
& \text { let fun } f(y: \text { int })=x+y \text { in } \\
& \text { let } x=\text { true in } f(3)
\end{aligned}
$$

- When we typecheck f, x is an integer, but it is re-bound to a boolean by the time f is called.
- The program as a whole typechecks, but we get a run-time error: dynamic scope makes the type system unsound!
- Early versions of LISP used dynamic scope, and it is arguably useful in an untyped language.
- Dynamic scope is now generally acknowledged as a mistake - but one that naive language designers still make.

Anonymous, first-class functions

- In many languages (including Java as of version 8), we can also write an expression for a function without a name:

$$
\lambda x: \tau . e
$$

- Here, λ (Greek letter lambda) introduces an anonymous function expression in which x is bound in e.
- (The λ-notation dates to Church's higher-order logic (1940); there are several competing stories about why he chose λ.)
- In Scala one writes: (x: Type) $=>$ e
- In Java 8: x \rightarrow e (no type needed)
- In Haskell: \x -> e or \x::Type -> eThe lambda-calculus is a model of anonymous functions
- We define $L_{\text {Lam }}$ to be $L_{\text {Let }}$ extended with typed
λ-abstraction and application as follows:

$$
\begin{aligned}
e & ::=\cdots\left|e_{1} e_{2}\right| \lambda x: \tau . e \\
\tau & ::=\cdots \mid \tau_{1} \rightarrow \tau_{2}
\end{aligned}
$$

- $\tau_{1} \rightarrow \tau_{2}$ is (again) the type of functions from τ_{1} to τ_{2}.
- We can extend the typing rules as follows:

```
\Gamma\vdashe:\tau for LLam
```

$$
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash e_{2}: \tau_{1}}{\Gamma \vdash e_{1} e_{2}: \tau_{2}}
$$

Evaluation for the λ-calculus

Examples

- Values are extended to include λ-abstractions λx. e:

$$
v::=\cdots \mid \lambda x . e
$$

(Note: We elide the type annotations when not needed.)

- and the evaluation rules are extended as follows:

$e \Downarrow v$ for $\mathrm{L}_{\text {Lam }}$

$$
\frac{}{\lambda x . e \Downarrow \lambda x \cdot e} \quad \frac{e_{1} \Downarrow \lambda x . e \quad e_{2} \Downarrow v_{2} \quad e\left[v_{2} / x\right] \Downarrow v}{e_{1} e_{2} \Downarrow v}
$$

- Note: Combined with let, this subsumes named functions! We can just define let fun as "syntactic sugar"
let fun $f(x: \tau)=e_{1}$ in $e_{2} \Longleftrightarrow$ let $f=\lambda x: \tau . e_{1}$ in e_{2}
- In $L_{\text {Lam }}$, we can define a higher-order function that calls its argument twice:

$$
\text { let fun twice }(f: \tau \rightarrow \tau)=\lambda x: \tau . f(f(x)) \text { in } \cdots
$$

- and we can define the composition of two functions:
let compose $=\lambda f: \tau_{2} \rightarrow \tau_{3} . \lambda g: \tau_{1} \rightarrow \tau_{2} . \lambda x: \tau_{1} . f(g(x))$ in \cdots
- Notice we are using repeated λ-abstractions to handle multiple arguments

Recursive functions

- However, $L_{\text {Lam }}$ still cannot express general recursion, e.g. the factorial function:

```
let fun fact(n:int) \(=\)
    if \(n==0\) then 1 else \(n \times \operatorname{fact}(n-1)\) in \(\cdots\)
```

is not allowed because fact is not in scope inside the function body.

- We can't write it directly as a λ-expression $\lambda x: \tau$. e either because we don't have a "name" for the function we're trying to define inside e.
- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)
- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, F\#)

```
let f(x) = e // nonrecursive:
    // only x is in scope in e
let rec f(x) = e // recursive:
    // both f and x in scope in e
```

- Note: In the untyped λ-calculus, let rec is definable using a special λ-term called the Y combinator

Anonymous recursive functions

- Inspired by $\mathrm{L}_{\text {Lam }}$, we introduce a notation for anonymous recursive functions:

$$
e::=\cdots \mid \operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2} . e
$$

- Idea: f is a local name for the function being defined, and is in scope in e, along with the argument x.
- We define $L_{\text {Rec }}$ to be $L_{\text {Lam }}$ extended with rec.
- We can then define let rec as syntactic sugar:

$$
\begin{aligned}
& \text { let rec } f\left(x: \tau_{1}\right): \tau_{2}=e_{1} \text { in } e_{2} \\
& \quad \Longleftrightarrow \operatorname{let} f=\operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2} . e_{1} \text { in } e_{2}
\end{aligned}
$$

- Note: The outer f is in scope in e_{2}, while the inner one is in scope in e_{1}. The two f bindings are unrelated.

Anonymous recursive functions: typing

- The types of $L_{\text {Rec }}$ are the same. We just add one rule:

$\Gamma \vdash e: \tau$ for $L_{\text {Rec }}$

$$
\frac{\Gamma, f: \tau_{1} \rightarrow \tau_{2}, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \operatorname{rec} f\left(x: \tau_{1}\right): \tau_{2} \cdot e: \tau_{1} \rightarrow \tau_{2}}
$$

- This says: to typecheck a recursive function,
- bind f to the type $\tau_{1} \rightarrow \tau_{2}$ (so that we can call it as a function in e),
- bind x to the type τ_{1} (so that we can use it as an argument in e),
- typecheck e.
- Since we use the same function type, the existing function application rule is unchanged.

Anonymous recursive functions: semantics

- Like a λ-term, a recursive function is a value:

$$
v::=\cdots \mid \operatorname{rec} f(x) . e
$$

- We can evaluate recursive functions as follows:
$e \Downarrow v$ for $L_{\text {Rec }}$

$$
\overline{\operatorname{rec} f(x) \cdot e \Downarrow \operatorname{rec} f(x) \cdot e}
$$

$\frac{e_{1} \Downarrow \operatorname{rec} f(x) . e \quad e_{2} \Downarrow v_{2} \quad e\left[\operatorname{rec} f(x) . e / f, v_{2} / x\right] \Downarrow v}{e_{1} e_{2} \Downarrow v}$

- To apply a recursive function, we substitute the argument for x and the whole rec expression for f.
- We can now write, typecheck and run fact
- (you will implement an evaluator for $L_{\text {Rec }}$ in Assignment 2 that can do this)
- In fact, $\mathrm{L}_{\text {Rec }}$ is Turing-complete (though it is still so limited that it is not very useful as a general-purpose language)
- (Turing complete means: able to simulate any Turing machine, that is, any computable function / any other programming language. ITCS covers Turing completeness and computability in depth.)
- What if we want to define mutually recursive functions?
- A simple example:
def even(n: Int) $=$ if $n=0$ then true else odd($n-1$)
def odd(n : Int) $=$ if $\mathrm{n}==0$ then false else even($\mathrm{n}-1$)
Perhaps surprisingly, we can't easily do this!
- One solution: generalize let rec:
let rec $f_{1}\left(x_{1}: \tau_{1}\right): \tau_{1}^{\prime}=e_{1}$ and \cdots and $f_{n}\left(x_{n}: \tau_{n}\right): \tau_{n}^{\prime}=e_{n}$ in e
where f_{1}, \ldots, f_{n} are all in scope in bodies e_{1}, \ldots, e_{n}.
- This gets messy fast; we'll revisit this issue later.
- Today we have covered:
- Named functions
- Static vs. dynamic scope
- Anonymous functions
- Recursive functions
- along with our first "composite" type, the function type $\tau_{1} \rightarrow \tau_{2}$.
- Next time
- Data structures: Pairs (combination) and variants (choice)

The story so far

Elements of Programming Languages

Lecture 6: Data structures

James Cheney
University of Edinburgh

October 11, 2016

- We've now covered the main ingredients of any programming language:
- Abstract syntax
- Semantics/interpretation
- Types
- Variables and binding
- Functions and recursion
- but only in the context of a very weak language: there are no "data structures" (records, lists, variants), pointers, side-effects etc.
- Let alone even more advanced features such as classes, interfaces, or generics
- Over the next few lectures we will show how to add them, consolidating understanding of the foundations along the way.

Pairs

Pairs in various languages

- The simplest way to combine data structures: pairing

$$
(1,2) \quad(\text { true }, \text { false }) \quad(1,(\text { true }, \lambda x: \text { int } . x+2))
$$

- If we have a pair, we can extract one of the components:

$$
\begin{gathered}
\text { fst }(1,2) \rightsquigarrow 1 \quad \text { snd (true, false }) \rightsquigarrow \text { false } \\
\text { snd }(1,(\text { true }, \lambda x: \text { int. } x+2)) \rightsquigarrow(\text { true }, \lambda x: \text { int. } x+2)
\end{gathered}
$$

- Finally, we can often pattern match against a pair, to extract both components at once:

$$
\text { let pair }(x, y)=(1,2) \text { in }(y, x) \rightsquigarrow(2,1)
$$

Haskell	Scala	Java	Python
$(1,2)$	$(1,2)$	new Pair $(1,2)$	$(1,2)$
fst e	e._1	e.getFirst()	e[0]
snd e	e._2	e.getSecond()	e[1]
let $(x, y)=$	val $(x, y)=$	N/A	N/A

- Functional languages typically have explicit syntax (and types) for pairs
- Java and C-like languages have "record", "struct" or "class" structures that accommodate multiple, named fields.
- A pair type can be defined but is not built-in and there is no support for pattern-matching

Syntax and Semantics of Pairs

Types for Pairs

- Syntax of pair expressions and values:

$$
\begin{aligned}
e & ::= \\
& \cdots\left|\left(e_{1}, e_{2}\right)\right| \text { fst } e \mid \text { snd } e \\
& \mid \text { let pair }(x, y)=e_{1} \text { in } e_{2} \\
v & ::= \\
& \cdots \mid\left(v_{1}, v_{2}\right)
\end{aligned}
$$

$e \Downarrow v$ for pairs

$$
\begin{gathered}
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2}}{\left(e_{1}, e_{2}\right) \Downarrow\left(v_{1}, v_{2}\right)} \quad \frac{e \Downarrow\left(v_{1}, v_{2}\right)}{f s t e \Downarrow v_{1}} \quad \frac{e \Downarrow\left(v_{1}, v_{2}\right)}{\text { snd } e \Downarrow v_{2}} \\
\frac{e_{1} \Downarrow\left(v_{1}, v_{2}\right)}{\text { let pair }(x, y)=e_{1}\left[v_{1} / x, v_{2} / y\right] \Downarrow v} \\
\text { in } e_{2} \Downarrow v
\end{gathered}
$$

- Types for pair expressions:

$$
\tau::=\cdots \mid \tau_{1} \times \tau_{2}
$$

$\Gamma \vdash e: \tau$ for pairs

$$
\begin{gathered}
\frac{\Gamma \vdash e_{1}: \tau_{1}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \mathrm{fst} e: \tau_{1}} \quad \frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \operatorname{snd} e: \tau_{2}} \\
\frac{\Gamma \vdash e_{1}: \tau_{1} \times \tau_{2} \quad \Gamma, x: \tau_{1}, y: \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \text { let pair }(x, y)=e_{1} \text { in } e_{2}: \tau}
\end{gathered}
$$

let vs. fst and snd

- The fst and snd operations are definable in terms of let pair:

$$
\begin{aligned}
& \text { fst } e \Longleftrightarrow \text { let pair }(x, y)=e \text { in } x \\
& \text { snd } e \Longleftrightarrow \text { let pair }(x, y)=e \text { in } y
\end{aligned}
$$

- Actually, the let pair construct is definable in terms of let, fst, snd too:

$$
\begin{aligned}
& \text { let pair }(x, y)=e \text { in } e_{2} \\
& \quad \Longleftrightarrow \operatorname{let} p=e \text { in } e_{2}[\text { fst } p / x, \text { snd } p / y]
\end{aligned}
$$

- We typically just use the (simpler) fst and snd constructs and treat let pair as syntactic sugar.

More generally: tuples and records

- Nothing stops us from adding triples, quadruples, ..., n-tuples.

$$
(1,2,3) \quad \text { (true, } 2,3, \lambda x \cdot(x, x))
$$

- As mentioned earlier, many languages prefer named record syntax:

$$
(a: 1, b: 2, c: 3) \quad\left(b: \text { true }, n_{1}: 2, n_{2}: 3, f: \lambda x \cdot(x, x)\right)
$$

- (cf. class fields in Java, structs in C, etc.)
- These are undeniably useful, but are definable using pairs.
- We'll revisit named record-style constructs when we consider classes and modules.

Special case: the "unit" type

Motivation for variant types

- Nothing stops us from adding a type of 0-tuples: a data structure with no data. This is often called the unit type, or unit.

$$
\begin{aligned}
e & ::= \\
v: & \cdots \mid() \\
\tau: & \cdots \mid() \\
\overline{() \Downarrow()} & \cdots \mid \text { unit } \\
& \overline{\Gamma \vdash(): \text { unit }}
\end{aligned}
$$

- this may seem a little pointless: why bother to define a type with no (interesting) data and no operations?
- This is analogous to void in C/Java; in Haskell and Scala it is called ().
- Pairs allow us to combine two data structures (a τ_{1} and a τ_{2}).
- What if we want a data structure that allows us to choose between different options?
- We've already seen one example: booleans.
- A boolean can be one of two values.
- Given a boolean, we can look at its value and choose among two options, using if then else.
- Can we generalize this idea?

Another example: null values

- Sometimes we want to produce either a regular value or a special "null" value.
- Some languages, including SQL and Java, allow many types to have null values by default.
- This leads to the need for defensive programming to avoid the dreaded NullPointerException in Java, or strange query behavior in SQL
- Sir Tony Hoare (inventor of Quicksort) introduced null references in Algol in 1965 "simply because it was so easy to implement" !
- he now calls them "the billion dollar mistake": http://www.infoq.com/presentations/ \hookleftarrow Null-References-The-Billion \hookleftarrow
-Dollar-Mistake-Tony-Hoare

Another problem with Null

stackoverflow

How do I correctly pass the string "Null" (an employee's proper surname) to a SOAP web service from ActionScript 3?

```
We have an employee whose last name is Null. Our employee lookup application is killed when
W. We have an employee whose last name is Null. Our employee lookup application is killed w
3508 that last name is used as the
    <soapenv:Fault>
    <faultcode>soapenv:Server.userException</faultcode>
        <faultstring>coldfusion.xm1. rpc.cFCCInvocationException:[coldfusion.runtime.Mi ssingArgume
    ute, huh?
    The parameter type is string
                                    asked 4 years ago

\section*{What would be better?}
- Consider an option type:
\[
\begin{aligned}
e & ::=\cdots \mid \text { none } \mid \text { some }(e) \\
\tau & ::=\cdots \mid \text { option }[\tau]
\end{aligned}
\]
\[
\overline{\Gamma \vdash \text { none : option }[\tau]} \quad \frac{1 \vdash e: \tau}{\Gamma \vdash \operatorname{some}(e): \operatorname{option}[\tau]}
\]
- Then we can use none to indicate absence of a value, and some(e) to give the present value.
- Morover, the type of an expression tells us whether null values are possible.
- The option type is useful but still a little limited: we either get a \(\tau\) value, or nothing
- If none means failure, we might want to get some more information about why the failure occurred.
- We would like to be able to return an error code
- In older languages, notably C, special values are often used for errors
- Example: read reads from a file, and either returns number of bytes read, or -1 representing an error
- The actual error code is passed via a global variable
- It's easy to forget to check this result, and the function's return value can't be used to return data.
- Other languages use exceptions, which we'll cover much later

\section*{The OK-or-error type}
- Suppose we want to return either a normal value \(\tau_{o k}\) or an error value \(\tau_{\text {err }}\).
- Let's write okOrErr\(\left[\tau_{o k}, \tau_{e r r}\right]\) for this type.
\[
\begin{aligned}
e & ::=\cdots|\operatorname{ok}(e)| \operatorname{err}(e) \\
\tau & ::=\cdots \mid \operatorname{okOrErr}\left[\tau_{1}, \tau_{2}\right]
\end{aligned}
\]
- Basic idea:
- if \(e\) has type \(\tau_{o k}\), then ok \((e)\) has type okOrErr\(\left[\tau_{o k}, \tau_{\text {err }}\right]\)
- if \(e\) has type \(\tau_{\text {err }}\), then \(\operatorname{err}(e)\) has type okOrErr\(\left[\tau_{o k}, \tau_{\text {err }}\right]\)
- When we talked about option[ \(\tau\) ], we didn't really say how to use the results.
- If we have a okOrErr\(\left[\tau_{o k}, \tau_{\text {err }}\right]\) value \(v\), then we want to be able to branch on its value:
- If \(v\) is \(o k\left(v_{o k}\right)\), then we probably want to get at \(v_{o k}\) and use it to proceed with the computation
- If \(v\) is err \(\left(v_{e r r}\right)\), then we probably want to get at \(v_{\text {err }}\) to report the error and stop the computation.
- In other words, we want to perform case analysis on the value, and extract the wrapped value for further processing

\section*{Case analysis}

\section*{Variant types, more generally}
- We consider a case analysis construct as follows:
\[
\text { case } e \text { of }\left\{\operatorname{ok}(x) \Rightarrow e_{o k} ; \operatorname{err}(y) \Rightarrow e_{e r r}\right\}
\]
- This is a generalized conditional: "If \(e\) evaluates to \(\mathrm{ok}\left(v_{o k}\right)\), then evaluate \(e_{o k}\) with \(v_{o k}\) replacing \(x\), else it evaluates to \(\operatorname{err}\left(v_{\text {err }}\right)\) so evaluate \(e_{\text {err }}\) with \(v_{\text {err }}\) replacing y."
- Here, \(x\) is bound in \(e_{o k}\) and \(y\) is bound in \(e_{e r r}\)
- This construct should be familiar by now from Scala:
```

e match { case Ok(x) => e1
case Err(x) => e2
} // note slightly different syntax

```
- Notice that the ok and err cases are completely symmetric
- Generalizing this type might also be useful for other situations than error handling...
- Therefore, let's rename and generalize the notation:
```

$e \quad:=\cdots|\operatorname{left}(e)| \operatorname{right}(e)$
$\mid \quad$ case e of $\left\{\operatorname{left}(x) \Rightarrow e_{1} ; \operatorname{right}(y) \Rightarrow e_{2}\right\}$
$v::=\cdots|\operatorname{left}(v)| \operatorname{right}(v)$
$\tau::=\cdots \mid \tau_{1}+\tau_{2}$

```
- We will call type \(\tau_{1}+\tau_{2}\) a variant type (sometimes also called sum or disjoint union)

\section*{Types for variants}
- We extend the typing rules as follows:

\section*{\(\Gamma \vdash \tau\) for variant types}
\[
\begin{gathered}
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \operatorname{left}(e): \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \operatorname{right}(e): \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{1}: \tau \quad \Gamma, y: \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \operatorname{case} e \text { of }\left\{\operatorname{left}(x) \Rightarrow e_{1} ; \operatorname{right}(y) \Rightarrow e_{2}\right\}: \tau}
\end{gathered}
\]
- Idea: left and right "wrap" \(\tau_{1}\) or \(\tau_{2}\) as \(\tau_{1}+\tau_{2}\)
- Idea: Case is like conditional, only we can use the wrapped value extracted from left(v) or right( \(v\) ).
- We extend the evaluation rules as follows:
\(e \Downarrow v\) for variant types
\[
\begin{gathered}
\frac{e \Downarrow v}{\operatorname{left}(e) \Downarrow \operatorname{left}(v)} \quad \frac{e \Downarrow v}{\operatorname{right}(e) \Downarrow \operatorname{right}(v)} \\
e \Downarrow \operatorname{left}\left(v_{1}\right) \quad e_{1}\left[v_{1} / x\right] \Downarrow v \\
\hline \text { case } e \text { of }\left\{\operatorname{left}(x) \Rightarrow e_{1} ; \operatorname{right}(y) \Rightarrow e_{2}\right\} \Downarrow v \\
e \Downarrow \operatorname{right}\left(v_{2}\right) \quad e_{2}\left[v_{2} / y\right] \Downarrow v \\
\hline \text { case } e \text { of }\left\{\operatorname{left}(x) \Rightarrow e_{1} ; \operatorname{right}(y) \Rightarrow e_{2}\right\} \Downarrow v
\end{gathered}
\]
- Creating a \(\tau_{1}+\tau_{2}\) value is straightforward.
- Case analysis branches on the \(\tau_{1}+\tau_{2}\) value
- The Boolean type bool can be defined as unit + unit
\[
\text { true } \Longleftrightarrow \operatorname{left}() \quad \text { false } \Longleftrightarrow \operatorname{right}()
\]
- Conditional is then defined as case analysis, ignoring the variables
```

if e then e}\mp@subsup{e}{1}{}\mathrm{ else e}\mp@subsup{e}{2}{
"case e of {left (x)=> er ; right (y) => e e }

```
- Likewise, the option type is definable as \(\tau\) +unit:
\[
\operatorname{some}(e) \Longleftrightarrow \operatorname{left}(e) \quad \text { none } \Longleftrightarrow \operatorname{right}()
\]
- Programming directly with binary variants is awkward
- As for pairs, the \(\tau_{1}+\tau_{2}\) type can be generalized to \(n\)-ary choices or named variants
- As we saw in Lecture 1 with abstract syntax trees, variants can be represented in different ways
- Haskell supports "datatypes" which give constructor names to the cases
- In Java, can use classes and inheritance to simulate this, verbosely (Python similar)
- Scala does not directly support named variant types, but provides "case classes" and pattern matching
- We'll revisit case classes and variants later in discussion of object-oriented programming.

\section*{The empty type}
- We can also consider the 0-ary variant type
\[
\tau \quad::=\cdots \mid \text { empty }
\]
with no associated expressions or values
- Scala provides Nothing as a built-in type; most languages do not
- [Perhaps confusingly, this is not the same thing at all as the void or unit type!]
- We will talk about Nothing again when we cover subtyping
- (Insert Seinfeld joke here, if anyone is old enough to remember that.)
- Today we've covered two primitive types for structured data:
- Pairs, which combine two or more data structures
- Variants, which represent alternative choices among data structures
- Special cases (unit, empty) and generalizations (records, datatypes)
- This is a pattern we'll see over and over:
- Define a type and expressions for creating and using its elements
- Define typing rules and evaluation rules
- Next time:
- Named records and variants
- Subtyping

\section*{Elements of Programming Languages}

Lecture 7：Records，variants，and subtyping

\author{
James Cheney \\ University of Edinburgh
}

October 18， 2016
－Last time：
－Simple data structures：pairing（product types），choice （sum types）
－Today：
－Records（generalizing products），variants（generalizing sums）and pattern matching
－Subtyping

\section*{Records}
－Records generalize pairs to \(n\)－tuples with named fields．
\[
\begin{aligned}
e & ::=\cdots\left|\left\langle I_{1}=e_{1}, \ldots, I_{n}=e_{n}\right\rangle\right| e . l \\
v & ::=\cdots \mid\left\langle I_{1}=v_{1}, \ldots, I_{n}=v_{n}\right\rangle \\
\tau & ::=\cdots \mid\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}\right\rangle
\end{aligned}
\]
－Examples：
\[
\begin{aligned}
& \langle f s t=1, \text { snd="forty-two" }\rangle . s n d \mapsto \text { "forty-two" } \\
& \langle x=3.0, y=4.0, \text { length }=5.0\rangle
\end{aligned}
\]
－Record fields can be（first－class）functions too：
\[
\langle x=3.0, y=4.0, \text { length }=\lambda(x, y) . \operatorname{sqrt}(x * x+y * y)\rangle
\]

\section*{Named variants}
－As mentioned earlier，named variants generalize binary variants just as records generalize pairs
\[
\begin{aligned}
e & ::=\cdots\left|C_{i}(e)\right| \text { case } e \text { of }\left\{C_{1}(x) \Rightarrow e_{1} ; \ldots\right\} \\
v & ::=\cdots \mid C_{i}(v) \\
\tau & ::=\cdots \mid\left[C_{1}: \tau_{1}, \ldots, C_{n}: \tau_{n}\right]
\end{aligned}
\]
－Basic idea：allow a choice of \(n\) cases，each with a name
－To construct a named variant，use the constructor name on a value of the appropriate type，e．g．\(C_{i}\left(e_{i}\right)\) where \(e_{i}: \tau_{i}\)
－The case construct generalizes to named variants also

\section*{Named variants in Scala: case classes}

\section*{Aside: Records and Variants in Haskell}
- We have already seen (and used) Scala's case class mechanism
```

abstract class IntList
case class Nil() extends IntList
case class Cons(head: Int, tail: IntList)
extends IntList

```
- Note: IntList, Nil, Cons are newly defined types, different from any others.
- Case classes support pattern matching
```

def foo(x: IntList) = x match {
case Nil() => ...
case Cons(head,tail) => ...
}

```
- In Haskell, data defines a recursive, named variant type data IntList \(=\) Nil Int | Cons Int IntList
- and cases can define named fields:
data Point = Point \{x :: Double, y :: Double\}
- In both cases the newly defined type is different from any other type seen so far, and the named constructor(s) can be used in pattern matching
- This approach dates to the ML programming language (Milner et al.) and earlier designs such as HOPE (Burstall et al.).
- (Both developed in Edinburgh)

\section*{Pattern matching}
- Datatypes and case classes support pattern matching
- We have seen a simple form of pattern matching for sum types.
- This generalizes to named variants
- But still is very limited: we only consider one "level" at a time
- Patterns typically also include constants and pairs/records
x match \{ case (1, (true, "abcd")) => ...\}
- Patterns in Scala, Haskell, ML can also be nested: that is, they can match more than one constructor

\footnotetext{
x match \(\{\) case \(\operatorname{Cons}(1, \operatorname{Cons}(\mathrm{y}, \mathrm{Nil}(\mathrm{)}))=>\ldots\)...\}
}

Records, Variants, and Pattern Matching

\section*{More pattern matching}
- Variables cannot be repeated, instead, explicit equality tests need to be used.
- The special pattern _ matches anything
- Patterns can overlap, and usually they are tried in order
```

result match {
case OK => println("All_isuwell")
case _ => println("Release\sqcupthe\sqcuphounds!")
}
// not the same as
result match {
case _ => println("Release\sqcupthe_hounds!")
case OK => println("All_is\sqcupwell")
}

```

\section*{Expanding nested pattern matching}

\section*{Type abbreviations}
- Nested pattern matching can be expanded out:
```

l match {
case Cons(x,Cons(y,Nil())) => ...
}

```
expands to
```

1 match \{
case Cons $(\mathrm{x}, \mathrm{t} 1)$ => t1 match \{
case Cons $(y, t 2)=>$ t2 match \{
case Nil() => ...
\} \} \}

```
- Obviously, it quickly becomes painful to write " \(\langle x\) : int, \(y\) : str \(\rangle\) " over and over.
- Type abbreviations introduce a name for a type.
\[
\text { type } T=\tau
\]

An abbreviation name \(T\) treated the same as its expansion \(\tau\)
- (much like let-bound variables)
- Examples:
```

type Point $=\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle$
type Point $3 d=\langle x: \mathrm{dbl}, \mathrm{y}: \mathrm{dbl}, \mathrm{z}: \mathrm{dbl}\rangle$
type Color $=\langle r$:int, g :int, $b:$ int \rangle
type ColoredPoint $=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, c:$ Color \rangle

```

Type abbreviations and definitions

\section*{Type definitions vs. abbreviations in practice}
- Instead, can also consider defining new (named) types
\[
\text { deftype } T=\tau
\]
- The term generative is sometimes used to refer to definitions that create a new entity rather than introducing an abbreviation
- Type abbreviations are usually not allowed to be recursive; type definitions can be.
\[
\text { deftype IntList }=[\text { Nil : unit, Cons }: \text { int } \times \text { IntList }]
\]
- In Haskell, type abbreviations are introduced by type, while new types can be defined by data or newtype declarations.
- In Java, there is no explicit notation for type abbreviations; the only way to define a new type is to define a class or interface
- In Scala, type abbreviations are introduced by type, while the class, object and trait constructs define new types
- Suppose we have a function:
\[
\text { dist }=\lambda p: \text { Point. sqrt }\left((p \cdot x)^{2}+(p \cdot y)^{2}\right)
\]
for computing the distance to the origin.
- Only the \(x\) and \(y\) fields are needed for this, so we'd like to be able to use this on ColoredPoints also.
- But, this doesn't typecheck:
\[
\operatorname{dist}(\langle x=8.0, y=12.0, c=\text { purple }\rangle)=13.0
\]
- We can introduce a subtyping relationship between Point and ColoredPoint to allow for this.
- Liskov proposed a guideline for subtyping:

\section*{Liskov Substitution Principle}

If \(S\) is a subtype of \(T\), then objects of type \(T\) may be replaced with objects of type \(S\) without altering any of the desirable properties of the program.
- If we use \(\tau<: \tau^{\prime}\) to mean " \(\tau\) is a subtype of \(\tau^{\prime \prime}\) ", and consider well-typedness to be desirable, then we can translate this to the following subsumption rule:
\[
\frac{\Gamma \vdash e: \tau_{1} \quad \tau_{1}<: \tau_{2}}{\Gamma \vdash e: \tau_{2}}
\]
- This says: if \(e\) has type \(\tau_{1}\) and \(\tau_{1}<: \tau_{2}\), then we can proceed by pretending it has type \(\tau_{2}\).

\section*{Record subtyping: width and depth}
- There are several different ways to define subtyping for records.
- Width subtyping: subtype has same fields as supertype (with identical types), and may have additional fields at the end:
\[
\overline{\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}, \ldots, I_{n+k}: \tau_{n+k}\right\rangle<:\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}\right\rangle}
\]
- Depth subtyping: subtype's fields are pointwise
subtypes of supertype
\[
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \cdots \quad \tau_{n}<: \tau_{n}^{\prime}}{\left\langle I_{1}: \tau_{1}, \ldots, I_{n}: \tau_{n}\right\rangle<:\left\langle I_{1}: \tau_{1}^{\prime}, \ldots, I_{n}: \tau_{n}^{\prime}\right\rangle}
\]
- These rules can be combined. Optionally, field reordering can also be allowed (but is harder to implement).
- (We'll abbreviate \(P=\) Point, \(P 3=\) Point3d, \(C P=\) ColoredPoint to save space...)
- So we have:
\[
\begin{aligned}
& P 3 d=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, z: \mathrm{dbl}\rangle<:\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle=P \\
& C P=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, \mathrm{c}: \text { Color }\rangle<:\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle=P
\end{aligned}
\]
but no other subtyping relationships hold
- So, we can call dist on Point3d or ColoredPoint:
\(\frac{x: P 3 d \vdash x: P 3 d \quad P 3 d<: P}{x: P 3 d \vdash x: P} \frac{\vdots}{x: P 3 d \vdash \operatorname{dist}(x): \operatorname{dbl}}\)

\section*{Examples}

\section*{Subtyping for pairs and variants}
- For pairs, subtyping is componentwise
\[
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \times \tau_{2}<: \tau_{1}^{\prime} \times \tau_{2}^{\prime}}
\]
- Similarly for binary variants
\[
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1}+\tau_{2}<: \tau_{1}^{\prime}+\tau_{2}^{\prime}}
\]
- For named variants, can have additional subtyping rules (but this is rare)

\section*{Subtyping for functions}
- When is \(A_{1} \rightarrow B_{1}<: A_{2} \rightarrow B_{2}\) ?
- Maybe componentwise, like pairs?
\[
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}}
\]
- But then we can do this (where \(\Gamma(p)=P)\) :
\[
\frac{\Gamma \vdash \lambda x \cdot x: C P \rightarrow C P \quad \frac{C P<: P \quad C P<: C P}{C P \rightarrow C P<: P \rightarrow C P}}{\Gamma \vdash \lambda x \cdot x: P \rightarrow C P} \quad \Gamma \vdash p: P
\]
- So, once ColoredPoint is a subtype of Point, we can change any Point to a ColoredPoint also. That doesn't seem right.

\section*{Covariant vs. contravariant}
- For the result type of a function (and for pairs and other data structures), the direction of subtyping is preserved:
\[
\frac{\tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1} \rightarrow \tau_{2}^{\prime}}
\]
- Subtyping of function results, pairs, etc., where order is preserved, is covariant.
- For the argument type of a function, the direction of subtyping is flipped:
\[
\frac{\tau_{1}^{\prime}<: \tau_{1}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}}
\]
- Subtyping of function arguments, where order is reversed, is called contravariant.
- any: a type that is a supertype of all types.
- Such a type describes the common interface of all its subtypes (e.g. hashing, equality in Java)
- In Scala, this is called Any
- empty: a type that is a subtype of all types.
- Usually, such a type is considered to be empty: there cannot actually be any values of this type.
- We've actually encountered this before, as the degenerate case of a choice type where there are zero chioces
- In Scala, this type is called Nothing. So for any Scala type \(\tau\) we have Nothing \(<: \tau<\) : Any.

\section*{Summary: Subtyping rules}

\section*{Structural vs. Nominal subtyping}

\section*{\(\tau_{1}<: \tau_{2}\)}
\[
\begin{gathered}
\overline{\text { empty }<: \tau} \overline{\tau<: \text { any }} \overline{\tau<: \tau} \quad \frac{\tau_{1}<: \tau_{2} \quad \tau_{2}<: \tau_{3}}{\tau_{1}<: \tau_{3}} \\
\frac{\tau_{1}<: \tau_{1}^{\prime} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \times \tau_{2}<: \tau_{1}^{\prime} \times \tau_{2}^{\prime}} \\
\frac{\tau_{1}<: \tau_{1}^{\prime}}{\tau_{1}+\tau_{2}<: \tau_{1}^{\prime}+\tau_{2}^{\prime}} \\
\frac{\tau_{1}^{\prime}<: \tau_{1}^{\prime}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}} \\
\hline
\end{gathered}
\]

Notice that we combine the covariant and contravariant rules for functions into a single rule.
- The approach to subtyping considered so far is called structural.
- The names we use for type abbreviations don't matter, only their structure. For example, Point3d \(<\) : Point because Point3d has all of the fields of Point (and more).
- Then \(\operatorname{dist}(p)\) also runs on \(p:\) Point3d (and gives a nonsense answer!)
- So far, a defined type has no subtypes (other than itself).
- By default, definitions ColoredPoint, Point and Point3d are unrelated.

\section*{Structural vs. Nominal subtyping}
- If we defined new types Point \({ }^{\prime}\) and Point \(3 d^{\prime}\), rather than treating them as abbreviations, then we have more control over subtyping
- Then we can declare ColoredPoint' to be a subtype of Point'
deftype Point \(=\langle x: \mathrm{dbl}, y: \mathrm{dbl}\rangle\)
deftype ColoredPoint \({ }^{\prime}<\) Point \({ }^{\prime}=\langle x: \mathrm{dbl}, y: \mathrm{dbl}, \mathrm{c}\) :Color \(\rangle\)
- However, we could choose not to assert Point3d' to be a subtype of Point \({ }^{\prime}\), preventing (mis)use of subtyping to view Point3d's as Point's.
- This nominal subtyping is used in Java and Scala
- A defined type can only be a subtype of another if it is declared as such
- More on this later!

\section*{Elements of Programming Languages}

Lecture 8: Polymorphism and type inference

\author{
James Cheney \\ University of Edinburgh
}

October 21, 2016
- This week and next week, we will cover different forms of abstraction
- type definitions, records, datatypes, subtyping
- polymorphism, type inference
- modules, interfaces
- objects, classes
- Today:
- polymorphism and type inference

Parametric Polymorphism

\section*{Consider the humble identity function}
- A function that returns its input:
```

def idInt(x: Int) = x
def idString(x: String) = x
def idPair(x: (Int,String)) = x

```
- Does the same thing no matter what the type is.
- But we cannot just write this:
\(\operatorname{def} \operatorname{id}(x)=x\)
(In Scala, every variable needs to have a type.)
arametric Polymorphism

\section*{Another example}
- Consider a pair "swap" operation:
def \(\operatorname{swapInt}(p:(\operatorname{Int}, \operatorname{Int}))=\left(p . \_2, p . \_1\right)\)
def swapString(p: (String,String)) = (p._2,p._1)
def swapIntString(p: (Int,String)) = (p._2,p._1)
- Again, the code is the same in both cases; only the types differ.
- But we can't write
def \(\operatorname{swap}(p)=\left(p . \_2, p . \_1\right)\)
What type should \(p\) have?

\section*{Another example}
- Consider a higher-order function that calls its argument twice:
```

def twiceInt(f: Int => Int) = {x: Int => f(f(x))}

```
def twiceStr (f: String => String) =
    \(\{x:\) String \(=>f(f(x))\}\)
- Again, the code is the same in both cases; only the types differ.
- But we can't write
def twice(f) \(=\{x \Rightarrow f(f(x))\}\)
What types should \(f\) and \(x\) have?

\section*{Type parameters}

In Scala, function definitions can have type parameters
def id[A](x: A): \(A=x\)

This says: given a type A, the function id [A] takes an A and returns an A.
```

def swap[A,B](p:): (B,A) = (p._2,p._1)

```

This says: given types \(A, B\), the function swap \([A, B]\) takes a pair \((A, B)\) and returns a pair ( \(B, A\) ).
```

def twice[A](f: A => A): A => A = {x:A => f(f(x))}

```

This says: given a type A , the function twice [A] takes a function \(f\) : A \(\Rightarrow\) A and returns a function of type A \(\Rightarrow\) A

\section*{Parametric Polymorphism}
- Scala's type parameters are an example of a phenomenon called polymorphism (= "many shapes")
- More specifically, parametric polymorphism because the function is parameterized by the type.
- Its behavior cannot "depend on" what type replaces parameter A.
- The type parameter A is abstract
- We also sometimes refer to A, B, C etc. as type variables

\section*{Polymorphism: More examples}
- Polymorphism is even more useful in combination with higher-order functions.
- Recall compose from the lab:
```

def compose[A,B,C](f: A => B, g: B => C) =
{x:A => g(f(x))}

```
- Likewise, the map and filter functions:
```

def map[A,B](f: A => B, x: List [A]): List[B] = ...
def filter[A](f: A => Bool, x: List[A]): List[A] = ...

```
(though in Scala these are usually defined as methods of List [A] so the A type parameter and x variable are implicit)

\section*{Formalization}

\section*{Formalization: Type and type variables}
- We add type variables \(A, B, C, \ldots\), type abstractions, type applications, and polymorphic types:
\[
\begin{aligned}
e & ::=\cdots|\wedge A . e| e[\tau] \\
\tau & ::=\cdots|A| \forall A . \tau
\end{aligned}
\]
- We also use (capture-avoiding) substitution of types for type variables in expressions and types.
- The type \(\forall A\). \(\tau\) is the type of expressions that can have type \(\tau\left[\tau^{\prime} / A\right]\) for any choice of \(A\). ( \(A\) is bound in \(\tau\).)
- The expression \(\wedge A\). e introduces a type variable for use in \(e\). (Thus, \(A\) is bound in any type annotations in e.)
- The expression e[ \(\tau]\) instantiates a type abstraction
- Define \(L_{\text {Poly }}\) to be the extension of \(\mathrm{L}_{\text {Data }}\) with these features
- Complication: Types now have variables. What is their scope? When is a type variable in scope in a type?
- The polymorphic type \(\forall A\). \(\tau\) binds \(A\) in \(\tau\).
- We write \(A \# \tau\) to say that type variable \(A\) is fresh for \(\tau\) :
\[
\begin{array}{ccc}
\frac{A \neq B}{A \# B} \quad \frac{A \# \tau_{1} A \# \tau_{2}}{A \# \tau_{1} \times \tau_{2}} & \frac{A \# \tau_{1} A \# \tau_{2}}{A \# \tau_{1} \rightarrow \tau_{2}} \\
\frac{A \# \tau_{1}}{A \# \tau_{1}+\tau_{2}} \quad \overline{A \# \forall A . \tau} & \frac{A \neq B A \# \tau}{A \# \forall B . \tau}
\end{array}
\]
- \(A \# x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \Longleftrightarrow A \# \tau_{1} \cdots A \# \tau_{n}\)
- Alpha-equivalence and type substitution are defined similarly to expressions.

\section*{Formalization: Typechecking polymorphic} expressions

\section*{Formalization: Semantics of polymorphic expressions}
- To model evaluation, we add type abstraction as a possible value form:
\[
v::=\cdots \mid \wedge A . e
\]
- with rules similar to those for \(\lambda\) and application:
\(e \Downarrow v\) for LPoly
\[
\frac{e \Downarrow \wedge A . e_{0} \quad e_{0}[\tau / A] \Downarrow v}{e[\tau] \Downarrow v} \quad \overline{\Lambda A . e \Downarrow \wedge A . e}
\]
- In \(L_{\text {Poly }}\), type information is irrelevant at run time.
- (Other languages, including Scala, do retain some run time type information.)

\section*{Examples in \(L_{\text {Poly }}\)}
- We can augment the syntactic sugar for function definitions to allow type parameters:
\[
\text { let fun } f[A](x: \tau)=e \text { in } \ldots
\]
- This is equivalent to:
\[
\text { let } f=\Lambda A . \lambda x: \tau . e \text { in } \ldots
\]
- In either case, a function call can be written as
\[
f[\tau](x)
\]
- Identity function
\[
i d=\Lambda A \cdot \lambda x: A \cdot x
\]
- Swap
\[
\text { swap }=\wedge A . \wedge B . \lambda x: A \times B .(\text { snd } x, \text { fst } x)
\]
- Twice
\[
\text { twice }=\Lambda A . \lambda f: A \rightarrow A \cdot \lambda x: A . f(f(x))
\]
- For example:
\[
\begin{gathered}
\operatorname{swap}[\text { int }][\operatorname{str}](1, " a ") \Downarrow(" a ", 1) \\
\text { twice }[\text { int }](\lambda x: 2 \times x)(2) \Downarrow 8
\end{gathered}
\]

Parametric Polymorphism

\section*{Lists and parameterized types}
- In Scala (and other languages such as Haskell and ML), type abbreviations and definitions can be parameterized.
- List [_] is an example: given a type T , it constructs another type List [T]
\[
\text { deftype } \operatorname{List}[A]=[\text { Nil : unit; Cons : } A \times \operatorname{List}[A]]
\]
- Such types are sometimes called type constructors
- (See tutorial questions on lists)
- We will revisit parameterized types when we cover modules
- Polymorphism refers to several related techniques for "code reuse" or "overloading"
- Subtype polymorphism: reuse based on inclusion relations between types.
- Parametric polymorphism: abstraction over type parameters
- Ad hoc polymorphism: Reuse of same name for multiple (potentially type-dependent) implementations (e.g. overloading + for addition on different numeric types, string concatenation etc.)
- These have some overlap
- We will discuss overloading, subtyping and polymorphism (and their interaction) in future lectures.
- As seen in even small examples, specifying the type parameters of polymorphic functions quickly becomes tiresome
\[
\operatorname{swap}[\text { int }][\text { str }] \quad \operatorname{map}[\text { int }][\text { str }]
\]
- Idea: Can we have the benefits of (polymorphic) typing, without the costs? (or at least: with fewer annotations)
- Type inference: Given a program without full type information (or with some missing), infer type annotations so that the program can be typechecked.

Hindley-Milner type inference
- A very influential approach was developed independently by J. Roger Hindley (in logic) and Robin Milner (in CS).
- Idea: Typecheck an expression symbolically, collecting "constraints" on the unknown type variables
- If the constraints have a common solution then this solution is a most general way to type the expression
- Constraints can be solved using unification, an equation solving technique from automated reasoning/logic programming
- If not, then the expression has a type error
- As an example, consider swap defined as follows:
\[
\vdash \lambda x: A .(\operatorname{snd} x, \text { fst } x): B
\]
\(A, B\) are the as yet unknown types of \(x\) and swap.

\section*{Hindley-Milner example [Non-examinable]}
- As an example, consider swap defined as follows:
\[
\vdash \lambda x: A .(\operatorname{snd} x, \text { fst } x): B
\]
\(A, B\) are the as yet unknown types of \(x\) and swap.
- A lambda abstraction creates a function: hence \(B=A \rightarrow A_{1}\) for some \(A_{1}\) such that
\(x: A \vdash(\operatorname{snd} x\), fst \(x): A_{1}\)
- As an example, consider swap defined as follows:
\[
\vdash \lambda x: A .(\operatorname{snd} x, \text { fst } x): B
\]
\(A, B\) are the as yet unknown types of \(x\) and swap.
- A lambda abstraction creates a function: hence \(B=A \rightarrow A_{1}\) for some \(A_{1}\) such that \(x: A \vdash(\operatorname{snd} x\), fst \(x): A_{1}\)
- A pair constructs a pair type: hence \(A_{1}=A_{2} \times A_{3}\) where \(x: A \vdash \operatorname{snd} x: A_{2}\) and \(x: A \vdash \mathrm{fst} x: A_{3}\)

\section*{Hindley-Milner example [Non-examinable]}
- As an example, consider swap defined as follows:
\[
\vdash \lambda x: A .(\operatorname{snd} x, \text { fst } x): B
\]
\(A, B\) are the as yet unknown types of \(x\) and swap.
- A lambda abstraction creates a function: hence \(B=A \rightarrow A_{1}\) for some \(A_{1}\) such that \(x: A \vdash(\operatorname{snd} x\), fst \(x): A_{1}\)
- A pair constructs a pair type: hence \(A_{1}=A_{2} \times A_{3}\) where \(x: A \vdash\) snd \(x: A_{2}\) and \(x: A \vdash\) fst \(x: A_{3}\)
- This can only be the case if \(x: A_{3} \times A_{2}\), i.e. \(A=A_{3} \times A_{2}\).

\section*{Hindley-Milner example [Non-examinable]}
- As an example, consider swap defined as follows:
\[
\vdash \lambda x: A .(\operatorname{snd} x, \text { fst } x): B
\]
\(A, B\) are the as yet unknown types of \(x\) and swap.
- A lambda abstraction creates a function: hence \(B=A \rightarrow A_{1}\) for some \(A_{1}\) such that \(x: A \vdash(\) snd \(x\), fst \(x): A_{1}\)
- A pair constructs a pair type: hence \(A_{1}=A_{2} \times A_{3}\) where \(x: A \vdash \operatorname{snd} x: A_{2}\) and \(x: A \vdash \mathrm{fst} x: A_{3}\)
- This can only be the case if \(x: A_{3} \times A_{2}\), i.e. \(A=A_{3} \times A_{2}\).
- Solving the constraints: \(A=A_{3} \times A_{2}, A_{1}=A_{2} \times A_{3}\) and so \(B=A_{2} \times A_{3} \rightarrow A_{3} \times A_{2}\)
－An important additional idea was introduced in the ML programming language，to avoid the need to explicitly introduce type variables and apply polymorphic functions to type arguments
－When a function is defined using let fun（or let rec）， first infer a type：
\[
\text { swap : } A_{2} \times A_{3} \rightarrow A_{3} \times A_{2}
\]
－Then abstract over all of its free type parameters．
\[
\text { swap : } \forall A \cdot \forall B \cdot A \times B \rightarrow B \times A
\]
－Finally，when a polymorphic function is applied，infer the missing types．
\[
\operatorname{swap}(1, " a ") \rightsquigarrow \operatorname{swap}[\text { int }][\operatorname{str}]\left(1, " a^{\prime \prime}\right)
\]
－Strengths
－Elegant and effective
－Requires no type annotations at all
－Weaknesses
－Can be difficult to explain errors
－In theory，can have exponential time complexity（in practice，it runs efficiently on real programs）
－Very sensitive to extension：subtyping and other extensions to the type system tend to require giving up some nice properties
－（We are intentionally leaving out a lot of technical detail －HM type inference is covered in more detail in ITCS．）

\section*{Type inference in Scala}
－Scala does not employ full HM type inference，but uses many of the same ideas．
－Type information in Scala flows from function arguments to their results
```

def f[A](x: List[A]): List[(A,A)] = ...
f(List(1,2,3)) // A must be Int, don't need f[Int]

```
and sequentially through statement blocks
```

var l = List(1,2,3); // l: List[Int] inferred
var y = f(1); // y : List[(Int,Int)] inferred

```

\section*{Type inference in Scala}
－Type information does not flow across arguments in the same argument list
```

def map[A](f: A => B, l: List[A]): List[B] = ...
scala> map({x: Int => x + 1}, List(1,2,3))
res0: List[Int] = List(2, 3, 4)
scala> map({x => x + 1}, List(1,2,3))
<console>:25: error: missing parameter type

```
－But it can flow from earlier argument lists to later ones：
```

def map2[A](l: List[A])(f: A => B): List[B] = ...
scala> map2(List(1,2,3)) {x => x + 1}
res1: List[Int] = List(2, 3, 4)

```
- Compared to Java, many fewer annotations needed
- Compared to ML, Haskell, etc. many more annotations needed
- The reason has to do with Scala's integration of polymorphism and subtyping
- needed for integration with Java-style object/class system
- Combining subtyping and polymorphism is tricky (type inference can easily become undecidable)
- Scala chooses to avoid global constraint-solving and instead propagate type information locally
- Today we covered:
- The idea of thinking of the same code as having many different types
- Parametric polymorphism: makes the type parameter explicit and abstract
- Brief coverage of type inference.
- Next time:
- Programs, modules, and interfaces

\section*{Elements of Programming Languages}

Lecture 9：Programs，modules and interfaces

\section*{James Cheney}

University of Edinburgh
October 25， 2016
－So far we have covered programming＂in the small＂
－simple functional programming
－abstractions：parametric polymorphism and subtyping
－Next few lectures：programming＂in the large＂
－Today
－＂Programs＂as collections of definitions
－Namespace management－packages
－Abstract data types－modules and interfaces
－We will mostly work＂by example＂using Scala－ formalizing modules，interfaces involves a lot of bureaucracy．

Programs
－What is a program？
－In LPoly，a program is an expression；any functions defined in \(L_{\text {Poly }}\) are local to the expression
```

let fun $f(x: \tau)=e_{1}$ in
let fun $g\left(y: \tau^{\prime}\right)=e_{2}$ in
!
e

```
－Scope management is easier with these simplistic forms， but isn＇t very modular
－In particular，we can＇t easily split a program up into parts that do unrelated work．
－Most languages support declarations
\[
\begin{aligned}
\text { Decl } \ni d::= & \text { let } x=e ; \mid \text { let fun } f(y: \tau)=e ; \\
\mid & \text { let rec } f(y: \tau): \tau^{\prime}=e ; \\
\mid & \text { type } T=\tau ; \mid \operatorname{deftype} T=\tau ;
\end{aligned}
\]
－A program is a sequence of declarations．The names \(x, f\) ， \(T\) are in scope in the subsequent declarations．
－Variation：In some languages（Haskell，Scala），the order of declarations within a program is unimportant，and names can be referenced before they are used．
－Variation：In some languages，only certain＂top－level＂ declarations are allowed（e．g．classes／interfaces in Java）

\section*{Entry points}

\section*{Programming in the large}
－The entry point is the place where execution starts when the program is run
```

public static void main(String[] args) {...}

```
－Can be specified in different ways：
－Executable：specify a particular function that is called first（e．g．main in C／C ++ ，Java，Scala）
－Scripting：entry point is start of program，expressions or statements run in order
－Web applications：entry points are functions such as doGet，doPost in Java＇s Servlet interface
－Reactive：provide callbacks to handle one or more events （e．g．JavaScript handlers for mouse actions）
－What is the largest program you＇ve written（or maintained）？
－ 1000 lines－ 1 file？
－ 10,000 lines？ 10 files？
－ 100,000 lines？ 100 files？
－Sooner or later，someone is going to want to use the same name for different things．
－If there are \(n\) programmers，then there are \(O\left(n^{2}\right)\) possible sources of name conflicts．
－Namespaces provide a way to compartmentalize names to avoid ambiguity．

\section*{Example：Packages in Java}
／／com／widget／round／Widget．java
package com．widget．round
class Widget \｛．．．
\}
／／com／widget／square／Widget．java
package com．widget．square
class Widget \｛ ．．．
\}
－Given a namespace，we can import it import com．widget．round．Widget
－This brings a single name defined in a namespace into the current scope
import com．widget．round．＊
－This brings all names defined in a namespace into the current scope
－In Java，importing can only happen at the top level of a
file，and imported names are always classes or interfaces．
－（Scala is more flexible，as we＇ll see）
－We can reuse Widget and disambiguate：
com．widget．square．Widget vs．
com．widget．round．Widget
－（Package names track the directory hierarchy in Java．）

\section*{Importing}

\section*{Code reuse and abstract data types}

\section*{Running example: priority queues in Scala}
- Another important concern for programming in the large is code reuse.
- We'd like to implement (or reuse) certain key data structures once and for all, in a modular way
- Examples: Lists, stacks, queues, sets, maps, etc.
- An abstract data type (ADT) is a type together with some operations on it
- Abstract means the type definition (and operation implementations) are not visible to the rest of the program
- Only the types of the operations are visible (the interface)
- An ADT also has a specification describing its behavior

Using Scala objects, here is an initial priority queue ADT:
- A priority queue represents a set of integers.
- empty corresponds to the empty set
- insert adds to the set
- remove removes the least element of the set
```

```
object PQueue {
```

```
object PQueue {
    type T = ...
    type T = ...
    val empty: T
    val empty: T
    def insert(n: Int,pq: T): T
    def insert(n: Int,pq: T): T
    def remove(pq:T): (Int,T)
    def remove(pq:T): (Int,T)
}
```

```
}
```

```
- (Similar to Java class with only static members)
- Specification:

\section*{Implementing priority queues}
- One implementation: sorted lists (others possible)
```

object ListPQueue {
type T = List[Int]
val empty: T = Nil
def insert(n: Int,pq: T): T = pq match {
case Nil => List(n)
case x::xs =>
if (n < x) {n::pq} else {x::insert(n,xs)}
}
def remove(pq:T) = pq match {
case x::xs => (x,xs) // otherwise error
}
}

```

\section*{ListPQueue isn't abstract}

One solution (?)
- If we only use the ListPQueue operations, the specification is satisfied
- However, the ListPQueue.T type allows non-sorted lists
- So we can violate the specification by passing remove a non-sorted list!
```

remove(List (2,1))
// returns 2, should return 1

```
- This violates the (implicit) invariant that ListPQueue.T is a sorted list.
- So, users of this module need to be more careful to use it correctly.
- As in Java, we can make some components private
```

object ListPQueue {
private type T = List[Int]
private val foo: T = List(1)
}

```
- This stops us from accessing foo
```

scala> ListPQueue.foo
<console>:20: error: (foo cannot be accessed)

```
- However, T is still visible as List [Int]!
```

scala> ListPQueue.remove(List (2,1))
res10: (Int, List[Int]) = (2,List(1))

```

\section*{Interfaces}

\section*{Traits in Scala}
- Another way to hide information about the implementation of a module is to specify an interface
- (This may be familiar from Java already. Haskell type classes also can act as interfaces.)
- We'd like to use an interface PQueue that says there is some type T with operations:
```

empty: T
insert: (Int,T) => T
remove: T => (Int,T)

```
but prevent clients from knowing (or relying on) the definition of \(T\).
- Scala doesn't exactly have Java-like interfaces, but its traits can play a similar role.
```

trait PQueue {
type T = List[Int]
val empty: T
def insert(n: Int, pq: T): T
def remove(pq: T): (Int,T)
}

```
- (We'll say more about why Scala uses the terms object and trait instead of module and interface later...)

\section*{Implementing an interface}
- Already, the trait interface hides information about the implementations of the operations. But, now we can go further and hide the definition of T !
```

trait PQueue {
type T // abstract!
}

```
- Now we can specify that ListPQueue implements PQueue using the extends keyword:
```

object ListPQueue extends PQueue {...}

```
- This assertion needs be checked to ensure that all of the components of PQueue are present and have the right types!

\section*{Checking a module against an interface}
```

trait PQueue {
type T
val empty: T
def insert(n: Int, pq: T): T
def remove(pq: T): (Int,T)
}

```
- An implementation needs to define \(T\) to be some type \(\tau\)
- It needs to provide a value empty: \(\tau\)
- It needs to provide functions insert and remove with the corresponding types (replacing T with \(\tau\) )
- If any are missing or types don't match, error.
- (Note: this is related to type inference, and there can be similar complications!)

\section*{Data abstraction}
- We can now provide other implementations of PQueue
object ListPQueue extends PQueue \(\{\ldots\}\)
object SetPQueue extends \(P Q u e u e\{. .\).
- Also, in Scala, objects can be passed as values, and extends implies a subtyping relationship
- So, we can write a function that uses any implementation of PQueue, and run it with different implementations:
```

def make(m: PQueue) =
m.insert(42,m.insert(17,m.empty))
scala> make(ListPQueue)

```
- Even though ListPQueue satisfies the PQueue interface, its definition of \(\mathrm{T}=\) List [Int] is still visible
- However, T is abstract to clients that use the PQueue interface
- So, we can't do this:
```

scala> def bad(m: PQueue) = m.remove(List(2,1))
<console>:18: error: type mismatch;
found : List[Int]
required: m.T
def bad(m: PQueue) = m.remove(List(2,1))

```

\section*{Implementing multiple interfaces}

\section*{Representation independence}
- An interface gives a "view" of a module (possibly hiding some details).
- Modules can also satisfy more than one interface.
```

trait HasSize {
type T
def size(x: T): Int
}
object ListPQueue extends PQueue with HasSize {
def size(pq: T) = pq.length
}

```
- (This is slightly hacky, since it relies on using the same type name T as PQueue uses. We'll revisit this later.)
- If we have two implementations of the same interface, how do we know they are providing "equivalent" behavior?
- Representation independence means that the clients of the interface can't distinguish the two implementations using the operations of the interface
- (even if their actual run time behavior is very different)
- This is much easier in a strongly typed language because the abstraction barrier is enforced by type system
- In other languages, client code needs to be more careful to avoid depending on (or violating) intended abstraction barriers

Modules and interfaces, in general

\section*{Summary}
```

 Decl \nid ::= let x=e;| let fun f(x:\tau)=e;
    ```
    let rec f(x:\tau): 徭=e;
```

 let rec f(x:\tau): 徭=e;
 | type T= ; | deftype T=\tau;
 | type T= ; | deftype T=\tau;
 | module M {d, \cdots}\cdots\mp@subsup{d}{n}{}}|\mathrm{ import q
 | module M {d, \cdots}\cdots\mp@subsup{d}{n}{}}|\mathrm{ import q
 | interface S {s, \cdotss s}
 | interface S {s, \cdotss s}
 Spec \nis ::= val x: \tau;| type T;| type T=\tau;
 Spec \nis ::= val x: \tau;| type T;| type T=\tau;
 QName \niq ::= x|M.q|S.q| -

```
```

QName \niq ::= x|M.q|S.q| -

```
```

This a simplified form of the (influential) Standard ML module language. (We aren't going to formalize the details.) Note: Allows arbitrary nesting of modules, interfaces Not shown: need to allow qualified names in code also

- As programs grow in size, we want to:
- split programs into components (packages or modules)
- use package or module scope and structured names to refer to components
- use interfaces to hide implementation details from other parts of the program
- We've given a high-level idea of how these components fit together, illustrated using Scala
- Next time:
- Object-oriented constructs (objects, classes)

Elements of Programming Languages

Lecture 10: Objects and Classes

James Cheney
University of Edinburgh

October 28, 2016

- Last time: "programming in the large"
- Programs, packages/namespaces, importing
- Modules and interfaces
- Mostly: using Scala for examples
- Today: the elephant in the room:
- Objects and Classes
- A taste of "advanced" OOP constructs: inner classes, anonymous objects and mixins
- Illustrate using examples in Scala, and some comparisons with Java

Objects

- An object is a module with some additional properties:
- Encapsulation: Access to an object's components can be limited to the object itself (or to a subset of objects)
- Self-reference: An object is a value and its methods can refer to the object's fields and methods (via an implicit parameter, often called this or self)
- Inheritance: An object can inherit behavior from another "parent" object
- Objects/inheritance are tied to classes in some (but not all) OO languages
- In Scala, the object keyword creates a singleton object ("class with only one instance")
- (in Java, objects can only be created as instances of classes)
- Inside an object definition, the this keyword refers to the object being defined.
- This provides another form of recursion:

```
object Fact {
    def fact (n: Int): Int = {
        if (n == 0) {1} else {n * this.fact(n-1)}
    }
}
```

- Moreover, as we'll see, the recursion is open: the method that is called by this. $\mathrm{foo}(\mathrm{x}$) depends on what this is at run time.

Encapsulation and Scope

Classes

- An object can place restrictions on the scope of its members
- Typically used to prevent external interference with 'internal state' of object
- For example: Java, C++, C\# all support
- private keyword: "only visible to this object"
- public keyword: "visible to all"
- Java: package scope (default): visible only to other components in the same package
- Scala: private[X] allows qualified scope: "private to (class/object/trait/package) X"
- Python, Javascript: don't have (enforced) private scope (relies on programmer goodwill)
- A class is an interface with some additional properties:
- Instantiation: classes can describe how to construct associated objects (instances of the class)
- Inheritance: classes may inherit from zero or more parent classes as well as implement zero or more interfaces
- Abstraction: Classes may be abstract, that is, may name but not define some fields or methods
- Dynamic dispatch: The choice of which method is called is determined by the run-time type of a class instance, not the static type available at the call
- Not all object-oriented languages have classes!
- Smalltalk, JavaScript are well-known exceptions
- Such languages nevertheless often use prototypes, or commonly-used objects that play a similar role to classes

Inheritance

- Classes typically define special functions that create new instances, called constructors
- In C++/Java, constructors are defined explicitly and separately from the initialized data
- In Scala, there is usually one "default" constructor whose parameters are in scope in the whole class body
- (additional constructors can be defined as needed)
- Constructors called with the new keyword

```
class C(x: Int, y: String) {
    val i = x
    val s = y
    def this(x: Int) = this(x,"default")
}
scala> val c1 = new C(1,"abc")
scala> val c2 = new C(1)
```

- An object can inherit from another.
- This means: the parent object, and its components, become "part of" the child object
- accessible using super keyword
- (though some components may not be directly accessible)
- In Java (and Scala), a class extends exactly one superclass (Object, if not otherwise specified)
- In C++, a class can have multiple superclasses
- Non-class-based languages, such as JavaScript and Smalltalk, support inheritance directly on objects via extension

Inheritance and encapsulation

- As (briefly) mentioned last week, an object Obj that extends a trait Tr is automatically a subtype (Obj <: Tr)
- Likewise, a class Cl that extends a trait Tr is a subtype of $\operatorname{Tr}(\mathrm{Cl}<: \mathrm{Tr})$
- A class (or object) Sub that extends another class Super is a subtype of Super (Sub <: Super)
- However, subtyping and inheritance are distinct features:
- As we've already seen, subtyping can exist without inheritance
- moreover, subtyping is about types, whereas inheritance is about behavior (code)
- Inheritance complicates the picture for encapsulation somewhat.
- private keyword prevents access from outside the class (including any subclasses).
- protected keyword means "visible to instances of this object and its subclasses"
- Scala: Both private and protected can be qualified with a scope [X] where X is a package, class or object.

```
class A { private[A] val a = 1
    protected[A] val b = 2}
class B extends A {
    def foo() = a + b
} // "a" not found
```


Cross-instance sharing

Companion Objects

- Classes in Java can have static fields/members that are shared across all instances
- Static methods can access private fields and methods
- static is also allowed in interfaces (but only as of Java 8)
- Class with only static members \sim module
- C++: friend keyword allows sharing between classes on a case-by-case basis
- Scala has no static keyword
- Scala instead uses companion objects
- Companion $=$ object with the same name as the class and defined in the same scope
- Companions can access each others' private components
object Count \{ private var $\mathrm{x}=1\}$
class Count \{ def incr() \{Count. $x=$ Count. $x+1\}\}$
- Note: This can only be done in compiled code, not interactively

Multiple inheritance and the diamond problem

Abstraction

- As noted, $\mathrm{C}++$ allows multiple inheritance
- Suppose we did this (in Scala terms):

```
class Win(val x: Int, val y: Int)
class TextWin(...) extends Win
class GraphicsWin(...) extends Win
class TextGraphicsWin(...)
    extends TextWin and GraphicsWin
```

- In C++, this means there are two copies of Win inside TextGraphicsWin
- They can easily become out of sync, causing problems
- Multiple inheritance is also difficult to implement (efficiently); many languages now avoid it
- A class may leave some components undefined
- Such classes must be marked abstract in Java, C++ and Scala
- To instantiate an abstract class, must provide definitions for the methods (e.g. in a subclass)
- Abstract classes can define common behavior to be inherited by subclasses
- In Scala, abstract classes can also have unknown type components
- (optionally with subtype constraints)

```
abstract class ConstantVal {
    type T <: AnyVal
    val c: T
} // a constant of any value type
```


Dynamic dispatch

- An abstract method can be implemented in different ways by different subclasses
- When an abstract method is called on an instance, the corresponding implementation is determined by the run-time type of the instance.
- (necessarily in this case, since the abstract class provides no implementation)

```
abstract class A { def foo(): String}
class B extends A { def foo() = "B"}
class C extends A { def foo() = "C" }
scala> val b:A = new B
scala> val c:A = new C
scala> (b.foo(), c.foo())
```


Overriding

- An inherited method that is already defined by a superclass can be overridden in a subclass
- This means that the subclass's version is called on that subclass's instances using dynamic dispatch
- In Java, @Override annotation is optional, checked documentation that a method overrides an inherited method
- In Scala, must use override keyword to clarify intention to override a method

```
class A { def foo() = "A"}
class B extends A { override def foo() = "B" }
scala> val b: A = new B
scala> b.foo()
class C extends A { def foo() = "C" } // error
```


Type tests and coercions

Advanced constructs

- Given x: A, Java/Scala allow us to test whether its run-time type is actually subclass B
scala> b.isInstanceOf [B]
and to coerce such a reference to y : B

```
scala> val b2: B = b.asInstanceOf[B]
```

- Warning: these features can be used to violate type abstraction!

```
def weird[A](x: A) = if (x.isInstanceOf[Int]) {
    (x.asInstanceOf[Int]+1).asInstanceOf[A]
    } else {x}
```

- So far, we've covered the "basic" OOP model (circa Java 1.0)
- Modern languages extend this in several ways
- We can define a class/object inside another class:
- As a member of the enclosing class (tied to a specific instance)
- or as a static member (shared across all instances)
- As a local definition inside a method
- As an anonymous local definition
- Some languages also support mixins (e.g. Scala traits)
- Scala supports similar, somewhat more uniform composition of classes, objects, and traits

Classes/objects as members

- In Scala, classes and objects (and traits) can be nested arbitrarily

```
class A { object B { var x = 1 } }
scala> val a = new A
object C {class D { var x = 1 } }
scala> val d = new C.D
class E { class F { var x = 1 } }
scala> val e = new E
scala> val f = new e.f
```

- Today
- Objects, encapsulation, self-reference
- Classes, inheritance, abstraction, dynamic dispatch
- This is only the tip of a very large iceberg...
- there are almost as many "object-oriented" programming models as languages
- the design space, and "right" formalisms, are still active areas of research
- Next time:
- Inner classes, anonymous objects, mixins, parameterized types
- Combining object-oriented and functional programming

Elements of Programming Languages

Lecture 11：Object－oriented functional programming

James Cheney
University of Edinburgh

November 1， 2016
－We＇ve now covered：
－basics of functional programming（with semantics）
－basics of modular and OO programming（via Scala examples）
－Today，finish discussion of＂programming in the large＂：
－some more advanced OO constructs
－and how they co－exist with／support functional programming in Scala
－list comprehensions as an extended example

Motivating inner class example

－So far，we＇ve covered the＂basic＂OOP model（circa Java 1．0），plus some Scala－isms
－Modern languages extend this model in several ways
－We can define a structure（class／object／trait）inside another：
－As a member of the enclosing class（tied to a specific instance）
－or as a static member（shared across all instances）
－As a local definition inside a method
－As an anonymous local definition
－Java（since 1．5）and Scala support＂generics＂ （parameterized types as well as polymorphic functions）
－Some languages also support mixins（e．g．Scala traits）
－A nested／inner class has access to the private／protected members of the containing class
－So，we can use nested classes to expose an interface associated with a specific object：

```
class List<A> {
    private A head;
    private List<A> tail;
    class ListIterator<A> implements Iterator<A> {
        ... (can access head, tail)
    }
}
```


Classes／objects as members

Local classes

－In Scala，classes and objects（and traits）can be nested arbitrarily

```
class A { object B { val x = 1 } }
scala> val a = new A
object C {class D { val x = 1 } }
scala> val d = new C.D
class E { class F { val x = 1 } }
scala> val e = new E
scala> val f = new e.F
```

－A local class（Java terminology）is a class that is defined inside a method

```
def foo(): Int = {
    val z = 1
    class X { val x = z + 1}
    return (new X).x
}
scala> foo()
res0: Int = 2
```


Anonymous classes／objects

－Given an interface or parent class，we can define an anonymous instance without giving it an explicit name
－In Java，called an anonymous local class
－In Scala，looks like this：

```
abstract class Foo { def foo() : Int }
val foo1 = new Foo { def foo() = 42 }
```

－We can also give a local name to the instance（useful since this may be shadowed）

```
val foo2 = new Foo { self =>
    val x = 42
    def foo() = self.x
}
```


Parameterized types

－As mentioned earlier，types can take parameters
－For example，List［A］has a type parameter A
－This is related to（but different from）polymorphism
－A polymorphic function（like map）has a type that is parameterized by a given type．
－A parameterized type（like List［＿］）is a type constructor：for every type T，it constructs a type List［T］．

Defining parameterized types

Using parameterized types inside a structure

- In Scala, there are basically three ways to define parameterized types:
- In a type abbreviation (NB: multiple parameters)

```
type Pair [A,B] = (A,B)
```

- in a (abstract) class definition

```
abstract class List[A]
case class Cons[A] (head: A, tail: List[A])
    extends List[A]
```

- in a trait definition
trait Stack[A] \{ ...
\}

Parameterized types and subtyping

- By default, a type parameter is invariant
- That is, neither covariant nor contravariant
- To indicate that a type parameter is covariant, we can prefix it with +

```
abstract class List[+A] // see tutorial 6
```

- To indicate that a type parameter is contravariant, we can prefix it with -
trait Fun[-A,+B] // see next few slides...
- Scala checks to make sure these variance annotations make sense!
- The type parameters of a structure are implicitly available to all components of the structure.
- Thus, in the List[A] class, map, flatMap, filter are declared as follows:

```
abstract class List[A] {
    ...
    def map[B](f: A => B): List[B]
    def filter(p: A => Boolean): List[A]
    def flatMap[B](f: A => List[B]): List[B]
        // applies f to each element of this,
        // and concatenates results
}
```


Type bounds

- Type parameters can be given subtyping bounds
- For example, in an interface (that is, trait or abstract class) I:

```
type T < C
```

says that abstract type member T is constrained to be a subtype of C .

- This is checked for any module implementing I
- Similarly, type parameters to function definitions, or class/trait definitions, can be bounded:

```
fun f[A <: C](...) = ...
class D[A <: C] { ... }
```

- Upper bounds A >: U are also possible...

Traits as mixins

Tastes great, and look at that shine!

- So far we have used Scala's trait keyword for "interfaces" (which can include type members, unlike Java)
- However, traits are considerably more powerful:
- Traits can contain fields
- Traits can provide ("default") method implementations
- This means traits provide a powerful form of modularity: mixin composition
- Idea: a trait can specify extra fields and methods providing a "behavior"
- Multiple traits can be "mixed in"; most recent definition "wins" (avoiding some problems of multipel inheritance)
- Java 8's support for "default" methods in interfaces also allows a form of mixin composition.
- Shimmer is a floor wax!
trait FloorWax \{ def clean(f: Floor) \{ ... \} \}
- No, it's a delicious dessert topping!

```
trait TastyDessertTopping {
    val calories = 1000
    def addTo(d: Dessert) { d.addCal(calories) }
}
```

- In Scala, it can be both:
object Shimmer extends FloorWax
with TastyDessertTopping \{ $\ldots\}$
with TastyDessertTopping \{ ... \}

Function types as interfaces

- Scala bills itself as a "multi-paradigm" or "object-oriented, functional" language
- How do the "paradigms" actually fit together?
- Some features, such as case classes, are more obviously "object-oriented" versions of "functional" constructs
- Until now, we have pretended pairs, λ-abstractions, etc. are primitives in Scala
- They are not primitives; and they need to be implemented in a way compatible with Java/JVM assumptions
- But how do they really work?
- Suppose we define the following interface:

```
trait Fun[-A,+B] { // A contravariant, B covariant
    def apply(x: A): B
}
```

- This says: an object implementing Fun $[A, B]$ has an apply method
- Note: This is basically the Function trait in the Scala standard library!
- Scala translates $f(x)$ to $f . \operatorname{apply}(x)$
- Also, $\{x: T \quad=>e\}$ is essentially syntactic sugar for new Function[Int,Int] \{def apply(x:T) = e \}!

Iterators and collections in Java

- Java provides standard interfaces for iterators and collections

```
interface Iterator<E> {
    boolean hasNext()
        E next()
}
interface Collection<E> {
    Iterator<E> iterator()
}
```

- These allow programming over different types of collections in a more abstract way than "indexed for loop"

Iterators and foreach loops

- Since Java 1.5, one can write the following:

```
for(Element x : coll) {
    .. do stuff with x ...
}
```

Provided coll implements the Collection<Element> interface

- This is essentially syntactic sugar for:

```
for(Iterator<Element> i = coll.iterator();
    i.hasNext(); ) {
    Element x = i.next();
    ... do stuff with x ...
}
```


foreach in Scala

- Scala has a similar for construct (with slightly different syntax)
for ($\mathrm{x}<-$ coll) \{ ... do something with x ... \}
- For example:

```
scala> for (x <- List(1,2,3)) { println(x) }
1
2
3
```

- The construct for ($\mathrm{x}<-\mathrm{coll}$) \{ e \} is syntactic sugar for:
coll.foreach\{x => ... do something with x ...\}
if x : T and coll has method foreach: ($\mathrm{A}=>()$) $=>$ ()
- Scala expands for loops before checking that coll actually provides foreach of appropriate type
- If not, you get a somewhat mysterious error message...

```
scala> for (x <- 42) {println(x)}
<console>:11: error: value foreach is not a
    member of Int
```


Comprehensions: Mapping

Comprehensions: Filtering

- Scala (in common with Haskell, Python, C\#, F\# and others) supports a rich "comprehension syntax"
Example:

```
scala> for (x <- List("a","b","c")) yield (x + "z")
res0: List[Int] = List(az,bz,cz)
```

- This is shorthand for:

$$
\text { List("a", "b", "c").map\{x => x + "z"\} }
$$

where map $[B]$ ($f: A=>B$): List $[B]$ is a method of List [A].

- (In fact, this works for any object implementing such a method.)
- Comprehensions can also include filters

```
scala> for(x <- List("a","b","c");
    if (x != "b")) yield (x + "z")
res0: List[Int] = List(az,cz)
```

- This is shorthand for:

```
List("a","b","c").filter{x => x != "b"}
    .map{x => x + "z"}
```

where filter(f: A => Boolean): List[A] is a method of List [A].

Comprehensions: Multiple Generators

- Comprehensions can also iterate over several lists

```
scala> for(x <- List("a","b","c");
    y <- List("a","b","c");
    if (x != y)) yield (x + y)
res0: List[Int] = List(ab,ac,ba,bc,ca,cb)
```

- This is shorthand for:

```
List("a","b","c").flatMap{x =>
    List("a","b","c").flatMap{y =>
        if (x != y) List(x + y) else {Nil}}}
```

where $f l a t M a p(f: A=>$ List $[B]$): List $[B]$ is a method of List [A].

- In the last few lectures we've covered
- Modules and interfaces
- Objects and classes
- How they interact with subtyping, type abstraction
- and how they can be used to implement "functional" features (particularly in Scala)
- This concludes our tour of "programming in the large"
- (though there is much more that could be said)
- Next time:
- imperative programming

The story so far

Elements of Programming Languages

Lecture 12: Imperative programming

James Cheney
University of Edinburgh

November 4, 2016

- So far we've mostly considered pure computations.
- Once a variable is bound to a value, the value never changes.
- that is, variables are immutable.
- This is not how most programming languages treat variables!
- In most languages, we can assign new values to variables: that is, variables are mutable by default
- Just a few languages are completely "pure" (Haskell).
- Others strike a balance:
- e.g. Scala distinguishes immutable (val) variables and mutable (var) variables
- similarly const in Java, C

Mutable vs. immutable

- Advantages of immutability:
- Referential transparency (substitution of equals for equals); programs easier to reason about and optimize
- Types tell us more about what a program can/cannot do
- Advantages of mutability:
- Some common data structures easier to implement
- Easier to translate to machine code (in a performance-preserving way)
- Seems closely tied to popular OOP model of "objects with hidden state and public methods"
- Today we'll consider programming with assignable variables and loops ($L_{\text {While }}$) and then discuss procedures and other forms of control flow
- Let's start with a simple example: $\mathrm{L}_{\text {While }}$, with statements

$$
\begin{aligned}
\text { Stmt } \ni s::= & \text { skip }\left|s_{1} ; s_{2}\right| x:=e \\
& \mid \quad \text { if } e \text { then } s_{1} \text { else } s_{2} \mid \text { while } e \text { do } s
\end{aligned}
$$

- skip does nothing
- $s_{1} ; s_{2}$ does s_{1}, then s_{2}
- $x:=e$ evaluates e and assigns the value to x
- if e then s_{1} else s_{2} evaluates e, and evaluates s_{1} or s_{2} based on the result.
- while e do s tests e. If true, evaluate s and loop; otherwise stop.
- We typically use $\}$ to parenthesize statements.

A simple example: factorial again

- In Scala, mutable variables can be defined with var

```
var n = ...
var x = 1
while(n > 0) {
        x = n * x
        n}=\textrm{n}-
}
```

- In $L_{\text {While }}$, all variables are mutable

$$
x:=1 ; \text { while }(n>0) \text { do }\{x:=n * x ; n:=n-1\}
$$

An interpreter for $\mathrm{L}_{\text {While }}$

We will define a pure interpreter:

```
def exec(env: Env[Value], s: Stmt): Env[Value] =
s match {
    case Skip => env
    case Seq(s1,s2) =>
        val env1 = exec(env, s1)
        exec(env1,s2)
    case IfThenElseS(e,s1,s2) => eval(env,e) match {
        case BoolV(true) => exec(env,s1)
        case BoolV(false) => exec(env,s2)
    }
}
```


While-programs: evaluation

```
def exec(env: Env[Value], s: Stmt): Env[Value] =
s match {
    ...
    case WhileDo(e,s) => eval(env, e) match {
        case BoolV(true) =>
            val env1 = exec(env,s)
            exec(env1, WhileDo(e,s))
        case BoolV(false) => env
    }
    case Assign(x,e)
        val v = eval(env,e)
        env + (x -> v)
}
```

$$
\begin{gathered}
\sigma, s \Downarrow \sigma^{\prime} \\
\frac{\sigma, \text { skip } \Downarrow \sigma}{} \frac{\sigma, s_{1} \Downarrow \sigma^{\prime} \quad \sigma^{\prime}, s_{2} \Downarrow \sigma^{\prime \prime}}{\sigma, s_{1} ; s_{2} \Downarrow \sigma^{\prime \prime}} \\
\frac{\sigma, e \Downarrow \text { true } \sigma, s_{1} \Downarrow \sigma^{\prime}}{\sigma, \text { if } e \text { then } s_{1} \text { else } s_{2} \Downarrow \sigma^{\prime}} \quad \frac{\sigma, e) \Downarrow \text { false } \quad \sigma, s_{2} \Downarrow \sigma^{\prime}}{\sigma, \text { if e then } s_{1} \text { else } s_{2} \Downarrow \sigma^{\prime}} \\
\frac{\sigma, e \Downarrow \text { true } \sigma, s \Downarrow \sigma^{\prime} \quad \sigma^{\prime}, \text { while e do } s \Downarrow \sigma^{\prime \prime}}{\sigma, \text { while e do } s \Downarrow \sigma^{\prime \prime}} \\
\frac{\sigma, e \Downarrow \text { false }}{\sigma, \text { while e do } s \Downarrow \sigma} \quad \frac{\sigma, e \Downarrow v}{\sigma, x:=e \Downarrow \sigma[x:=v]}
\end{gathered}
$$

- Here, we use evaluation in context $\sigma, e \Downarrow v$ (cf. Assignment 2)

Examples

Other control flow constructs

－$x:=y+1 ; z:=2 * x$

$$
\frac{\sigma_{1}, y+1 \Downarrow 2}{\sigma_{1}, x:=y+1 \Downarrow \sigma_{2}} \frac{\sigma_{2}, 2 * x \Downarrow 4}{\sigma_{1}, x:=y+1 ; z:=2 * x \Downarrow \sigma_{3}}
$$

－where

$$
\begin{aligned}
\sigma_{1} & =[y:=1] \\
\sigma_{2} & =[x:=2, y:=1] \\
\sigma_{3} & =[x:=2, y:=1, z:=4]
\end{aligned}
$$

－We＇ve taken＂if＂（with both＂then＂and＂else＂branches） and＂while＂to be primitive
－We can define some other operations in terms of these：

$$
\begin{aligned}
& \text { if } e \text { then } s \Longleftrightarrow \\
& \text { if } e \text { then } s \text { else skip } \\
& \text { do } s \text { while } e \Longleftrightarrow s \text {; while } e \text { do } s \\
& \text { for }(i \in n \ldots m) \text { do } s \Longleftrightarrow \quad i:=n ; \\
& \\
& \text { while } i \leq m \text { do }\{ \\
& \quad s ; i=i+1
\end{aligned}
$$

－as seen in C，Java，etc．

Structured vs．unstructured programming ［Non－examinable］

－LWhile is not a realistic language．
－Among other things，it lacks procedures
－Example（C／Java）：
int fact（int n ）\｛
int $\mathrm{x}=1$ ；
while（ $\mathrm{n}>0$ ）\｛

$$
\mathrm{x}=\mathrm{x} * \mathrm{n}
$$

$\mathrm{n}=\mathrm{n}-1$ ；
\}
return x ；
\}
－Procedures can be added to $L_{\text {While }}$（much like functions in $L_{\text {Rec }}$ ）
－Rather than do this，we＇ll show how to combine $L_{\text {While }}$ with $L_{\text {Rec }}$ later．
－All of the languages we＇ve seen so far are structured
－meaning，control flow is managed using if，while， procedures，functions，etc．
－However，low－level machine code doesn＇t have any of these．
－A machine－code program is just a sequence of instructions in memory
－The only control flow is branching：
－＂unconditionally go to instruction at address n＂
－＂if some condition holds，go to instruction at address n＂
－Similarly，＂goto＂statements were the main form of control flow in many early languages

"GO TO" Considered Harmful [Non-examinable]

- In a famous letter (CACM 1968), Dijkstra listed many disadvantages of "goto" and related constructs
- It allows you to write "spaghetti code", where control flow is very difficult to decipher
- For efficiency/historical reasons, many languages include such "unstructured" features:
- "goto" - jump to a specific program location
- "switch" statements
- "break" and "continue" in loops
- It's important to know about these features, their pitfalls and their safe uses.
- The C (and $C++$) language includes goto
- In C, goto L jumps to the statement labeled L
- A typical (relatively sane) use of goto
... do some stuff ...

> if (error) goto error;
... do some more stuff ...
if (error2) goto error;
... do some more stuff...
error: .. handle the error...

- We'll see other, better-structured ways to do this using exceptions.

goto in C: pitfalls [Non-examinable]

goto: caveats [Non-examinable]

- The scope of the goto L statement and the target L might be different
- for that matter, they might not even be in the same procedure!
- For example, what does this do:

```
goto L;
if(1) {
            int k = fact(3);
L: printf("%d",k);
}
```

- Answer: k will be some random value!
- goto can be used safely in C, but is best avoided unless you have a really good reason
- e.g. very high performance/systems code
- Safe use: within same procedure/scope
- Or: to jump "out" of a nested loop
- What's wrong with this picture?

```
if (error test 1)
    goto fail;
if (error test 2)
        goto fail;
        goto fail;
if (error test 3)
        goto fail;
    fail: ... handle error ...
- We've seen case or match constructs in Scala
- The switch statement in C, Java, etc. is similar:
```

switch (month) {

```
switch (month) {
    case 1: print("January"); break;
    case 1: print("January"); break;
    case 2: print("February"); break;
    case 2: print("February"); break;
    ...
    ...
    default: print("unknown month"); break;
    default: print("unknown month"); break;
}
```

```
}
```

```
- However, typically the argument must be a base type like int
    - (In C, braces on if are optional; if they're left out, only
    the first goto fail statement is conditional!)
- This led to an Apple SSL security vulnerability in 2014 (see https://gotofail.com/)

\section*{switch statements: gotchas [Non-examinable] Break and continue [Non-examinable]}
- See the break; statement?
- It's an important part of the control flow!
- it says "now jump out the end of the switch statement"
month \(=1\);
switch (month) \{
case 1: print("January");
case 2: print("February");
...
default: print("unknown month");
\} // prints all months!
- Can you think of a good reason why you would want to leave out the break?
- The break and continue statements are also allowed in loops in C/Java family languages.
```

for(i = 0; i < 10; i++) {
if (i % 2 == 0) continue;
if (i == 7) break;
print(i);
}

```
- "Continue" says Skip the rest of this iteration of the loop.
- "Break" says Jump to the next statement after this loop
- The break and continue statements are also allowed in loops in C/Java family languages.
```

for(i = 0; i < 10; i++) {
if (i % 2 == 0) continue;
if (i == 7) break;
print(i);
}

```
- "Continue" says Skip the rest of this iteration of the loop.
- "Break" says Jump to the next statement after this loop
- This will print 135 and then exit the loop.
- In Java, break and continue can use labels.
```

OUTER: for(i = 0; i < 10; i++) {
INNER: for(j = 0; j < 10; j++) {
if (j > i) continue INNER;
if (i == 4) break OUTER;
print(j);
}
}

```
- This will print 001012 and then exit the loop.

\section*{Labeled break and continue [Non-examinable] Summary}
- In Java, break and continue can use labels.
```

OUTER: for(i = 0; i < 10; i++) {
INNER: for(j = 0; j < 10; j++) {
if (j > i) continue INNER;
if (i == 4) break OUTER;
print(j);
}
}

```
- This will print 001012 and then exit the loop.
- (Labeled) break and continue accommodate some of the safe uses of goto without as many sharp edges
- Many real-world programming languages have:
(1) mutable state
(2) structured control flow (if/then, while, exceptions)
(3) procedures
- We've showed how to model and interpret \(L_{\text {While }}\), a simple imperative language
- and discussed a variety of (unstructured) control flow structures, such as "goto", "switch" and "break/continue".
- Next time:
- Small-step semantics and type soundness

\section*{Elements of Programming Languages}

Lecture 13: Small-step semantics and type safety

\author{
James Cheney \\ University of Edinburgh
}

November 8, 2016
- For the remaining lectures we consider some cross-cutting considerations for programming language design.
- Last time: Imperative programming
- Today:
- Finer-grained (small-step) evaluation
- Type safety
- In the first 6 lectures we covered:
- Basic arithmetic ( \(\mathrm{L}_{\text {Arith }}\) )
- Conditionals and booleans ( \(\mathrm{L}_{\text {If }}\) )
- Variables and let-binding (LLet)
- Functions and recursion ( \(L_{\text {Rec }}\) )
- Data structures ( \(\mathrm{L}_{\text {Data }}\) )
- formalized using big-step evaluation \((e \Downarrow v)\) and type judgments \((\Gamma \vdash e: \tau)\)
- and implemented using Scala interpreters
- Big-step semantics is convenient, but also limited
- It says how to evaluate the "whole program" (expression) to its "final value"
- But what if there is no final value?
- Expressions like \(1+\) true simply don't evaluate
- Nonterminating programs don't evaluate either, but for a different reason!
- As we will see in later lectures, it is also difficult to deal with other features, like exceptions, using big-step semantics
- We will now consider an alternative: small-step semantics
\[
e \mapsto e^{\prime}
\]
- which says how to evaluate an expression "one step at a time"
- If \(e_{0} \mapsto \cdots \mapsto e_{n}\) then we write \(e_{0} \mapsto^{*} e_{n}\). (in particular, for \(n=0\) we have \(e_{0} \mapsto^{*} e_{0}\) )
- We want it to be the case that \(e \mapsto^{*} v\) if and only if \(e \Downarrow v\).
- But \(\mapsto\) provides more detail about how this happens.
- It also allows expressions to "go wrong" (get stuck before reaching a value)
\(e \mapsto e^{\prime}\) for \(L_{\text {Arith }}\)
\[
\begin{gathered}
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \oplus e_{2} \mapsto e_{1}^{\prime} \oplus e_{2}} \\
v_{1}+v_{2} \mapsto v_{1}+\mathbb{N} v_{2}
\end{gathered} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{v_{1} \oplus e_{2} \mapsto v_{1} \oplus e_{2}^{\prime}}
\]
- If the first subexpression of \(\oplus\) can take a step, apply it
- If the first subexpression is a value and the second can take a step, apply it
- If both sides are values, perform the operation
- Example:
\[
1+(2 \times 3) \mapsto 1+6 \mapsto 7
\]

\section*{Small-step semantics: \(\mathrm{L}_{\text {|f }}\)}

\section*{\(e \mapsto e^{\prime}\) for \(L_{\text {If }}\)}
\[
\begin{gathered}
\frac{v_{1} \neq v_{2}}{v==v \mapsto \text { true }} \quad \frac{v_{2} \mapsto \text { false }}{v_{1}==v_{2} \mapsto e^{\prime}} \\
\text { if } e \text { then } e_{1} \text { else } e_{2} \mapsto \text { if } e^{\prime} \text { then } e_{1} \text { else } e_{2}
\end{gathered}
\]
\[
\begin{aligned}
& \overline{\text { if true then } e_{1} \text { else } e_{2} \mapsto e_{1}} \\
& \overline{\text { if false then } e_{1} \text { else } e_{2} \mapsto e_{2}}
\end{aligned}
\]
- If the conditional test is not a value, evaluate it one step
- Otherwise, evaluate the corresponding branch
\[
\text { if } \begin{aligned}
1==2 \text { then } 3 \text { else } 4 & \mapsto \text { if false then } 3 \text { else } 4 \\
& \mapsto 4
\end{aligned}
\]
small-step semantics

\section*{Small-step semantics: LLet}
\[
\begin{aligned}
& \hline e \mapsto e^{\prime} \text { for } L_{\text {Let }} \\
& \qquad \begin{array}{c}
e_{1} \mapsto e_{1}^{\prime} \\
\text { let } x=e_{1} \text { in } e_{2} \mapsto \text { let } x=e_{1}^{\prime} \text { in } e_{2} \\
\frac{\text { let } x=v_{1} \text { in } e_{2} \mapsto e_{2}\left[v_{1} / x\right]}{}
\end{array}
\end{aligned}
\]
- If the expression \(e_{1}\) is not yet a value, evaluate it one step
- Otherwise, substitute it and proceed
- Example:
\[
\text { let } \begin{aligned}
x=1+1 \text { in } x \times x & \mapsto \text { let } x=2 \text { in } x \times x \\
& \mapsto 2 \times 2 \\
& \mapsto 4
\end{aligned}
\]

\section*{Small-step semantics: \(L_{\text {Lam }}\)}

\section*{Small-step semantics: \(L_{\text {Rec }}\)}

\section*{\(e \mapsto e^{\prime}\) for \(L_{\text {Lam }}\)}
\[
\begin{gathered}
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} e_{2} \mapsto e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{v_{1} e_{2} \mapsto v_{1} e_{2}^{\prime}} \\
\overline{(\lambda x . e) v \mapsto e[v / x]}
\end{gathered}
\]
- If the function part is not a value, evaluate it one step
- If the function is a value and the argument isn't, evaluate it one step
- If both function and argument are values, substitute and proceed
\[
\begin{aligned}
((\lambda x \cdot \lambda y \cdot x+y) 1) 2 & \mapsto(\lambda y \cdot 1+y) 2 \\
& \mapsto 1+2 \mapsto 3
\end{aligned}
\]

\section*{\(e \mapsto e^{\prime}\) for \(L_{\text {Rec }}\)}
\[
\overline{(\operatorname{rec} f(x) . e) v \mapsto e[\operatorname{rec} f(x) \cdot e / f, v / x]}
\]
- Same rules for evaluation inside application
- Note that we need to substitute rec \(f(x)\).e for \(f\).
- Suppose fact is the factorial function:
\[
\text { fact } \begin{aligned}
2 & \mapsto \text { if } 2==0 \text { then } 1 \text { else } 2 \times \operatorname{fact}(2-1) \\
& \mapsto \text { if false then } 1 \text { else } 2 \times \operatorname{fact}(2-1) \\
& \mapsto 2 \times \operatorname{fact}(2-1) \mapsto 2 \times \operatorname{fact}(1) \\
& \mapsto 2 \times(\text { if } 1=0 \text { then } 1 \text { else } 1 \times \operatorname{fact}(1-1)) \\
& \mapsto 2 \times(\text { if false then } 1 \text { else } 1 \times \operatorname{fact}(1-1)) \\
& \mapsto 2 \times(1 \times \operatorname{fact}(1-1)) \mapsto 2 \times(1 \times \operatorname{fact}(0)) \\
& \mapsto{ }^{*} 2 \times(1 \times 1) \mapsto 2 \times 1 \mapsto 2
\end{aligned}
\]

\section*{Meaning of Rules}
- A judgment is a relation among one or more abstract syntax trees.
- Examples so far: \(e \Downarrow v, \Gamma \vdash e: \tau, e \mapsto e^{\prime}\)
- We have been defining judgments using rules of the form:

- where \(P_{1}, \ldots, P_{n}\) and \(Q\) are judgments.
- A rule of the form:
\[
\bar{Q}
\]
is called an axiom. It says that \(Q\) is always derivable.
- A rule of the form

says that judgment \(Q\) is derivable if \(P_{1}, \ldots, P_{n}\) are derivable.
- Symbols like \(e, v, \tau\) in rules stand for arbitrary expressions, values, or types.
- (If you have taken Logic Programming: These rules are a lot like Prolog clauses!)

\section*{Rule induction}

\section*{Induction on derivations of \(e \Downarrow v\)}

Suppose \(P(-,-)\) is a predicate over pairs of expressions and values. If:
- \(P(v, v)\) holds for all values \(v\)
- If \(P\left(e_{1}, v_{1}\right)\) and \(P\left(e_{2}, v_{2}\right)\) then \(P\left(e_{1}+e_{2}, v_{1}+_{\mathbb{N}} v_{2}\right)\)
- If \(P\left(e_{1}, v_{1}\right)\) and \(P\left(e_{2}, v_{2}\right)\) then \(P\left(e_{1} \times e_{2}, v_{1} \times \mathbb{N} v_{2}\right)\) then \(e \Downarrow v\) implies \(P(e, v)\).
- Rule induction can be derived from mathematical induction on the size (or height) of the derivation tree.
- (Much like structural induction.)
- We won't formally prove this.

Example: \(e \Downarrow v\) implies \(e \mapsto^{*} v\)
- As an example, we'll show a few cases of the forward direction of:
Theorem (Equivalence of big-step and small-step evaluation)
\(e \Downarrow v\) if and only if \(e \mapsto^{*} v\).

\section*{Base case}

If the derivation is of the form
\[
\overline{n \Downarrow n}
\]
for some number \(n\), then \(e=n\) is already a value \(v=n\), so no steps are needed to evaluate it, i.e. \(n \mapsto^{*} n\) in zero steps.

\section*{Example: \(e \Downarrow v\) implies \(e \mapsto^{*} v\)}

\section*{Type soundness}

\section*{Inductive case.}

If the derivation is of the form
\[
\frac{e_{1} \Downarrow v_{1} \quad e_{2} \Downarrow v_{2}}{e_{1}+e_{2} \Downarrow v_{1}+\mathbb{N} v_{2}}
\]
then by induction, we know \(e_{1} \mapsto^{*} v_{1}\) and \(e_{2} \mapsto^{*} v_{2}\). Using the small-step rules, we can then show
\[
e_{1}+e_{2} \mapsto^{*} v_{1}+e_{2} \mapsto^{*} v_{1}+v_{2} \mapsto v_{1}+\mathbb{N} v_{2}
\]
- The case for \(\times\) is similar.
- The central property of a type system is soundness.
- Roughly speaking, soundness means "well-typed programs don't go wrong" [Milner].
- But what exactly does "go wrong" mean?
- For large-step: hard to say
- For small-step: "go wrong" means "stuck" expression e that is not a value and cannot take a step.
- We could show something like:

\section*{Theorem (Soundness)}

If \(\vdash e: \tau\) and \(e \mapsto^{*} v\) then \(\vdash v: \tau\).
- This says that if an expression evaluates to a value, then the value has the right type.

\section*{Type soundness revisited}

\section*{Progress for \(\mathrm{L}_{\text {lf }}\)}
- We can decompose soundness into two parts:

\section*{Lemma (Progress)}

If \(\vdash e: \tau\) then either \(e\) is a value or for some \(e^{\prime}\) we have \(e \mapsto e^{\prime}\).

Lemma (Preservation)
If \(\vdash e: \tau\) and \(e \mapsto e^{\prime}\) then \(\vdash e^{\prime}: \tau\)
- Combining these two, can show:

Theorem (Soundness)
If \(\vdash e: \tau\) and \(e \mapsto^{*} v\) then \(\vdash v: \tau\).
- We will sketch these properties for \(\mathrm{L}_{\mathrm{If}}\) (leaving out a lot of formal detail)

Progress is proved by induction on \(\vdash e: \tau\) derivations. We show some representative cases.

\section*{Progress for +}
\[
\frac{\vdash e_{1}: \text { int } e_{2}: \text { int }}{\vdash e_{1}+e_{2}: \text { int }}
\]

If the derivation is of the above form, then by induction \(e_{1}\) is either a value or can take a step, and likewise for \(e_{2}\). There are three cases.
- If \(e_{1} \mapsto e_{1}^{\prime}\) then \(e_{1}+e_{2} \mapsto e_{1}^{\prime}+e_{2}\).
- If \(e_{1}\) is a value \(v_{1}\) and \(e_{2} \mapsto e_{2}^{\prime}\), then \(v_{1}+e_{2} \mapsto v_{1}+e_{2}^{\prime}\).
- If both \(e_{1}\) and \(e_{2}\) are values then they must both be numbers \(n_{1}, n_{2} \in \mathbb{N}\), so \(e_{1}+e_{2} \mapsto n_{1}+\mathbb{N} n_{2}\).

\section*{Progress for \(\mathrm{L}_{\text {If }}\)}

\section*{Progress for if.}

If the derivation is of the form
\[
\frac{\vdash e: \text { bool } \vdash e_{1}: \tau \quad \vdash e_{2}: \tau}{\vdash \text { if } e \text { then } e_{1} \text { else } e_{2}: \tau}
\]
then by induction, either \(e\) is a value or can take a step. There are two cases:
- If \(e \mapsto e^{\prime}\) then
if \(e\) then \(e_{1}\) else \(e_{2} \mapsto\) if \(e^{\prime}\) then \(e_{1}\) else \(e_{2}\).
- If \(e\) is a value, it must be either true or false. Then either if true then \(e_{1}\) else \(e_{2} \mapsto e_{1}\) or if false then \(e_{1}\) else \(e_{2} \mapsto e_{2}\).

\section*{Preservation for \(\mathrm{L}_{\mathrm{If}}\)}

Preservation is proved by induction on the structure of \(\vdash e: \tau\). We'll consider some representative cases:

\section*{Preservation for +}
\[
\frac{\vdash e_{1}: \text { int } \vdash e_{2}: \text { int }}{\vdash e_{1}+e_{2}: \text { int }}
\]

If the derivation is of the above form, there are three cases.
- If \(e_{i}=v_{i}\) and \(v_{1}+v_{2} \mapsto v_{1}+{ }_{\mathbb{N}} v_{2}\) then obviously \(\vdash v_{1}+\mathbb{N} v_{2}\) :int.
- If \(e_{1}+e_{2} \mapsto e_{1}^{\prime}+e_{2}\) where \(e_{1} \mapsto e_{1}^{\prime}\), then since \(\vdash e_{1}\) : int, we have \(\vdash e_{1}^{\prime}\) : int, so \(\vdash e_{1}^{\prime}+e_{2}\) : int also.
- The case where \(e_{1}=v_{1}\) and \(v_{1}+e_{2} \mapsto v_{1}+e_{2}^{\prime}\) is similar.

Preservation for if.
If the derivation is of the form
\[
\frac{\vdash e: \text { bool } \vdash e_{1}: \tau \quad \vdash e_{2}: \tau}{\vdash \text { if } e \text { then } e_{1} \text { else } e_{2}: \tau}
\]
then there are three cases:
- If if \(e\) then \(e_{1}\) else \(e_{2} \mapsto\) if \(e^{\prime}\) then \(e_{1}\) else \(e_{2}\) where \(e \mapsto e^{\prime}\), then by induction we can show that \(\vdash e^{\prime}\) : bool and \(\vdash\) if \(e^{\prime}\) then \(e_{1}\) else \(e_{2}: \tau\).
- If \(e=\) true then if true then \(e_{1}\) else \(e_{2} \mapsto e_{1}\), so we already know \(\vdash e_{1}: \tau\).
- The case for if false then \(e_{1}\) else \(e_{2} \mapsto e_{2}\) is similar.
- Progress: straightforward (a "let" can always take a step)
- Preservation: Suppose we have
\[
\frac{\vdash v_{1}: \tau^{\prime} \quad x: \tau^{\prime} \vdash e_{2}: \tau}{\vdash \text { let } x=v_{1} \text { in } e_{2}: \tau} \quad \overline{\text { let } x=v_{1} \text { in } e_{2} \mapsto e_{2}\left[v_{1} / x\right]}
\]

We need to show that \(\vdash e_{2}\left[v_{1} / x\right]: \tau\)
- For this we need a substitution lemma

\section*{Lemma (Substitution)}

If \(\Gamma, x: \tau^{\prime} \vdash e: \tau\) and \(\Gamma \vdash e^{\prime}: \tau^{\prime}\) then \(\Gamma \vdash e\left[e^{\prime} / x\right]: \tau\)

\section*{Type soundness for \(\mathrm{L}_{\text {Rec }}\) [non-examinable]}

\section*{Summary}
- Progress: If an application term is well-formed:
\[
\frac{\vdash e_{1}: \tau_{1} \rightarrow \tau_{2} \vdash e_{2}: \tau_{1}}{\vdash e_{1} e_{2}: \tau_{2}}
\]
then by induction, \(e_{1}\) is either a value or \(e_{1} \mapsto e_{1}^{\prime}\) for some \(e_{1}^{\prime}\). If it is a value, it must be either a lambda-expression or a recursive function, so \(e_{1} e_{2}\) can take a step. Otherwise, \(e_{1} e_{2} \mapsto e_{1}^{\prime} e_{2}\).
- Preservation: Similar to let, using substitution lemma for the cases
\[
\begin{aligned}
(\lambda x \cdot e) v & \mapsto e[v / x] \\
(\operatorname{rec} f(x) \cdot e) v & \mapsto e[\operatorname{rec} f(x) \cdot e / f, v / x]
\end{aligned}
\]
- Today we have presented
- Small-step evaluation: a finer-grained semantics
- Induction on derivations
- Type soundness (details for \(L_{\text {If }}\) )
- Sketch of type soundness for \(L_{\text {Rec }}\) [Non-examinable]
- Deep breath: No more proofs from now on.
- Remaining lectures cover cross-cutting language features, which often have subtle interactions with each other
- Next time: Guest lecture by Michel Steuwer on DSLs and rewrite-based optimizations for performance-portable parallel programming

\section*{Elements of Programming Languages}

Lecture 14：References，Arrays，and Resources

\author{
James Cheney \\ University of Edinburgh
}

November 15， 2016
－Over the final few lectures we are exploring cross－cutting design issues
－Today we consider a way to incorporate mutable variables／assignment into a functional setting：
－References
－Interaction with subtyping and polymorphism
－Resources，more generally
References References
－In \(\mathrm{L}_{\text {While }}\) ，all variables are mutable and global
－This makes programming fairly tedious and it＇s easy to
－There＇s also no way to create new variables（short of
－Can we smoothly add mutable state side－effects to \(L_{\text {Poly }}\) ？
－Consider the following language \(L_{\text {Ref }}\) extending \(L_{\text {Poly }}\) ：
\[
\begin{aligned}
e & ::=\cdots|\operatorname{ref}(e)|!e\left|e_{1}:=e_{2}\right| e_{1} ; e_{2} \\
\tau & ::=\cdots \mid \operatorname{ref}[\tau]
\end{aligned}
\]
－Idea： \(\operatorname{ref}(e)\) evaluates \(e\) to \(v\) and creates a new reference cell containing \(v\)
－！e evaluates \(e\) to a reference and looks up its value
－\(e_{1}:=e_{2}\) evaluates \(e_{1}\) to a reference cell and \(e_{2}\) to a value and assigns the value to the reference cell．
－\(e_{1} ; e_{2}\) evaluates \(e_{1}\) ，ignores value，then evaluates \(e_{2}\)
on
make mistakes coming up with a new variable name）
－Can we provide imperative features within a mostly－functional language？
References

\section*{References in Scala}
\(\Gamma \vdash e: \tau\) for \(L_{\text {Ref }}\)
\[
\begin{array}{cc}
\frac{\Gamma \vdash e: \tau}{\Gamma \vdash \operatorname{ref}(e): \operatorname{ref}[\tau]} & \frac{\Gamma \vdash e: \operatorname{ref}[\tau]}{\Gamma \vdash!e: \tau} \\
\frac{\Gamma \vdash e_{1}: \operatorname{ref}[\tau] \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1}:=e_{2}: \text { unit }} & \frac{\Gamma \vdash e_{1}: \tau^{\prime} \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1} ; e_{2}: \tau}
\end{array}
\]
- ref(e) creates a reference of type \(\tau\) if \(e: \tau\)
- !e gets a value of type \(\tau\) if \(e: \operatorname{ref}[\tau]\)
- \(e_{1}:=e_{2}\) updates reference \(e_{1}: \operatorname{ref}[\tau]\) with value \(e_{2}: \tau\). Its return value is ().
- \(e_{1} ; e_{2}\) evaluates \(e_{1}\), ignores the resulting value, and evaluates \(e_{2}\).

Recall that var in Scala makes a variable mutable:
```

class Ref[A](val x: A) {

```
class Ref[A](val x: A) {
    private var a = x
    private var a = x
    def get = a
    def get = a
    def set(y:A) = { a = y }
    def set(y:A) = { a = y }
}
}
scala> val x = new Ref[Int](1)
scala> val x = new Ref[Int](1)
x: Ref[Int] = Ref@725bef66
x: Ref[Int] = Ref@725bef66
scala> x.get
scala> x.get
res3: Int = 1
res3: Int = 1
scala> x.set(12)
scala> x.set(12)
scala> x.get
scala> x.get
res5: Int = 12
```

res5: Int = 12

```

\section*{References}

\section*{Imperative Programming and Procedures}
- Once we add references to a functional language (e.g. \(L_{\text {Poly }}\) ), we can use function definitions and lambda-abstraction to define procedures
- Basically, a procedure is just a function with return type unit
```

val x = new Ref(42)
def incrBy(n: Int): () = {
x.set(x.get + n)
}

```
- Such a procedure does not return a value, and is only executed for its "side effects" on references
- Using the same idea, we can embed all of the constructs of \(L_{\text {While }}\) in \(L_{\text {Ref }}\) (see tutorial)

\section*{References: Semantics}
- Small steps \(\sigma, e \mapsto \sigma^{\prime}, e^{\prime}\), where \(\sigma:\) Loc \(\rightarrow\) Value. "in initial state \(\sigma\), expression e can step to \(e^{\prime}\) with state \(\sigma^{\prime}\)."
- What does ref(e) evaluate to? A pointer or memory cell location, \(\ell \in \operatorname{Loc}\)
\[
v::=\cdots \mid \ell
\]
- These special values only appear during evaluation.
\[
\begin{aligned}
& \quad \sigma, e \mapsto \sigma^{\prime}, e^{\prime} \text { for } \mathrm{L}_{\text {Ref }} \\
& \qquad \frac{\ell \notin \operatorname{locs}(\sigma)}{\sigma, \operatorname{ref}(v) \mapsto \sigma[\ell:=v], \ell} \\
& \overline{\sigma,!\ell \mapsto \sigma, \sigma(\ell)} \quad \overline{\sigma, \ell:=v \mapsto \sigma[\ell:=v],()}
\end{aligned}
\]

\section*{References: Semantics}
- We also need to change all of the existing small-step rules to pass \(\sigma\) through...
\(\sigma, e \mapsto \sigma^{\prime}, e^{\prime}\)
\[
\begin{gathered}
\frac{\sigma, e_{1} \mapsto \sigma^{\prime}, e_{1}^{\prime}}{\sigma, e_{1} \oplus e_{2} \mapsto \sigma^{\prime}, e_{1}^{\prime} \oplus e_{2}} \\
\overline{\sigma, v_{1}+v_{2} \mapsto \sigma, v_{1}+\mathbb{N} v_{2}}
\end{gathered} \quad \frac{\sigma, e_{2} \mapsto \sigma^{\prime}, e_{2}^{\prime}}{\sigma, v_{1} \oplus e_{2} \mapsto \sigma^{\prime}, v_{1} \oplus e_{2}^{\prime}}
\]
- Subexpressions may contain references (leading to allocation or updates), so we need to allow \(\sigma\) to change in any subexpression evaluation step.

\section*{References: Semantics}

\section*{References: Examples}
- Simple example
\[
\begin{aligned}
& \text { let } r=\operatorname{ref}(42) \text { in } r:=17 ;!r \\
\mapsto & {[\ell:=42], \text { let } r=\ell \text { in } r:=17 ;!r } \\
\mapsto & {[\ell:=42], \ell:=17 ;!\ell } \\
\mapsto & {[\ell:=17],!\ell \mapsto[\ell:=17], 17 }
\end{aligned}
\]
- Notice again that we need to allow for updates to \(\sigma\).
- For example, to evaluate \(\operatorname{ref}(\operatorname{ref}(42))\)

\section*{References: Examples}

\section*{Something's missing}

Simple example
\[
\begin{aligned}
& \text { let } r=\operatorname{ref}(42) \text { in } r:=17 ;!r \\
\mapsto & {[\ell:=42], \text { let } r=\ell \text { in } r:=17 ;!r } \\
\mapsto & {[\ell:=42], \ell:=17 ;!\ell } \\
\mapsto & {[\ell:=17],!\ell \mapsto[\ell:=17], 17 }
\end{aligned}
\]
- Aliasing/copying
\[
\begin{aligned}
& \text { let } r=\operatorname{ref}(42) \text { in }(\lambda x \cdot \lambda y \cdot x:=!y+1) r r \\
\mapsto & {[\ell=42], \text { let } r=\ell \text { in }(\lambda x \cdot \lambda y \cdot x:=!y+1) r r } \\
\mapsto & {[\ell=42],(\lambda x \cdot \lambda y \cdot x:=!y+1) \ell \ell } \\
\mapsto & {[\ell=42],(\lambda y \cdot!\ell:=y+1) \ell } \\
\mapsto & {[\ell=42], \ell:=!\ell+1 \mapsto[\ell=42], \ell:=42+1 } \\
\mapsto & {[\ell=42], \ell:=43 \mapsto[\ell=43],() }
\end{aligned}
\]
- We didn't give a rule for \(e_{1} ; e_{2}\). It's pretty straightforward (exercise!)
- actually, \(e_{1} ; e_{2}\) is definable as
\[
e_{1} ; e_{2} \Longleftrightarrow \text { let }_{-}=e_{1} \text { in } e_{2}
\]
where _ stands for any variable not already in use in \(e_{1}, e_{2}\).
- Why?
- To evaluate \(e_{1} ; e_{2}\), we evaluate \(e_{1}\) for its side effects, ignore the result, and then evaluate \(e_{2}\) for its value (plus any side effects)
- Evaluating let \({ }_{-}=e_{1}\) in \(e_{2}\) first evaluates \(e_{1}\), then binds the resulting value to some variable not used in \(e_{2}\), and finally evaluates \(e_{2}\).

\section*{Reference semantics: observations}
- Notice that any subexpression can create, read or assign a reference:
\[
\text { let } r=\operatorname{ref}(1) \text { in }(r:=1000 ; 3)+!r
\]
- This means that evaluation order really matters!
- Do we get 4 or 1003 from the above?
- With left-to-right order, \(r:=1000\) is evaluated first, then ! \(r\), so we get 1003
- If we evaluated right-to-left, then ! \(r\) would evaluate to 1 , before assigning \(r:=1000\), so we would get 4
- However, the small-step rules clarify that existing constructs evaluate "as usual", with no side-effects.
- Arrays generalize references to allow getting and setting by index (i.e. a reference is a one-element array)
\[
\begin{aligned}
e & ::=\cdots\left|\operatorname{array}\left(e_{1}, e_{2}\right)\right| e_{1}\left[e_{2}\right] \mid e_{1}\left[e_{2}\right]:=e_{3} \\
\tau & ::=\cdots \mid \operatorname{array}[\tau]
\end{aligned}
\]
- \(\operatorname{array}(n\), init \()\) creates an array of \(n\) elements, initialized to init
- \(\operatorname{arr}[i]\) gets the \(i\) th element; \(\operatorname{arr}[i]:=v\) sets the \(i\) th element to \(v\)
- This introduces the potential problem of out-of-bounds accesses
- Typing, evaluation rules for arrays: exercise

\section*{References and subtyping}
- Consider Integer <: Object, String <: Object
- Suppose we allowed contravariant subtyping for Ref, i.e. Ref [-A]
- which is obviously silly: we shouldn't expect a reference to Object to be castable to String.
We could then do the following:
```

val x: Ref[Object] = new Ref(new Integer(42))
// String <: Object,
// hence Ref[Object] <: Ref[String]
x.get.length // unsound!

```
- Consider Int <: Object, String <: Object
- Suppose we allowed covariant subtyping for Ref, i.e. \(\operatorname{Ref}[+A]\)
- We could then do the following:
```

val x: Ref[String] = new Ref(new String("asdf"))
def bad(y: Ref[Object]) = y.set(new Integer(42))
bad(x) // x still has type Ref[String]!
x.get.length() // unsound!

```
- Therefore, mutable parameterized types like Ref must be invariant (neither covariant nor contravariant)
- (Java got this wrong, for built-in array types!)
- A related problem: references can violate type soundness in a language with Hindley-Milner style type inference and let-bound polymorphism (e.g. ML, OCaml, F\#)
let \(r=r e f(f n x=>)\) in
\(\mathrm{r}:=(\mathrm{fn} \mathrm{x}=>\mathrm{x}+1\) );
!r (true)
- r initially gets inferred type \(\forall A . A \rightarrow A\)
- We then assign \(r\) to be a function of type int \(\rightarrow\) int
- and then apply \(r\) to a boolean!
- Accepted solution: the value restriction - the right-hand side of a polymorphic let must be a value.
- (e.g., in Scala, polymorphism is only introduced via function definitions)
- References, arrays illustrate a common resource pattern:
- Memory cells (references, arrays, etc.)
- Files/file handles
- Database, network connections
- Locks
- Usage pattern: allocate/open/acquire, use, deallocate/close/release
- Key issues:
- How to ensure proper use?
- How to ensure eventual deallocation?
- How to avoid attempted use after deallocation?

\section*{References and polymorphism [non-examinable] Resources}
- Some languages (notably \(\mathrm{C} / \mathrm{C}++\) ) distinguish between type \(\tau\) and type \(\tau *\) ("pointer to \(\tau\) "), i.e. a mutable reference
- Other languages, notably Java, consider many types (e.g. classes) to be "reference types", i.e., all variables of that type are really mutable (and nullable!) references.
- In Scala, variables introduced by val are immutable, while using var they can be assigned.
- In Haskell, as a pure, functional language, all variables are immutable; references and mutable state are available but must be handled specially
- In a strongly typed language, we can ensure safe resource use by ensuring all expressions of type ref \([\tau]\) are properly initialized
- \(\mathrm{C} / \mathrm{C}++\) does not do this: a pointer \(\tau *\) may be "uninitialized" (not point to an allocated \(\tau\) block). Must be initialized separately via malloc or other operations.
- Java (sort of) does this: an expression of reference type \(\tau\) is a reference to an allocated \(\tau\) (or null!)
- Scala, Haskell don't allow "silent" null values, and so a \(\tau\) is always an allocated structure
- Moreover, a \(\operatorname{ref}[\tau]\) is always a reference to an allocated, mutable \(\tau\)

\section*{Safe deallocation of resources?}
- Unfortunately, types are not as helpful in enforcing safe deallocation.
- One problem: forgetting to deallocate (resource leaks). Leads to poor performance or run-time failure if resources exhausted.
- Another problem: deallocating the same resource more than once (double free), or trying to use it after it's been deallocated
- A major reason is aliasing: copies of references to allocated resources can propagate to unpredictable parts of the program
- Substructural typing discipline (cf. guest lecture) can help with this, but remains an active research topic...
- \(C / C++\) : explicit deallocation (free) must be done by the programmer.
- (This is very very hard to get right.)
- Java, Scala, Haskell use garbage collection. It is the runtime's job to decide when it is safe to deallocate resources.
- This makes life much easier for the programmer, but requires a much more sophisticated implementation, and complicates optimization/performance tuning
- Lexical scoping or exception handling works well for ensuring deallocation in certain common cases (e.g. files, locks, connections)
- Other approaches include reference counting, regions, etc.

\section*{Summary}
- We continued to explore design considerations that affect many aspects of a language
- Today:
- references and mutability, in generality
- interaction with subtyping and polymorphism
- some observations about other forms of resources and the "allocate/use/deallocate" pattern

\section*{Elements of Programming Languages}

Lecture 15: Evaluation strategies and laziness

\section*{James Cheney}

University of Edinburgh
November 18, 2016
- Final few lectures: cross-cutting language design issues
- So far:
- Type safety
- References, arrays, resources
- Today:
- Evaluation strategies (by-value, by-name, by-need)
- Impact on language design (particularly handling effects)

\section*{Evaluation order}
- We've noted already that some aspects of small-step semantics seem arbitrary
- For example, left-to-right or right-to-left evaluation
- Consider the rules for,\(+ \times\). There are two kinds: computational rules that actually do something:
\[
\overline{v_{1}+v_{2} \mapsto v_{1}+\mathbb{N} v_{2}} \quad \overline{v_{1} \times v_{2} \mapsto v_{1} \times_{\mathbb{N}} v_{2}}
\]
- and administrative rules that say how to evaluate inside subexpressions:
\[
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \oplus e_{2} \mapsto e_{1}^{\prime} \oplus e_{2}} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{v_{1} \oplus e_{2} \mapsto v_{1} \oplus e_{2}^{\prime}}
\]
- We can vary the evaluation order by changing the administrative rules.
- To evaluate right-to-left:
\[
\frac{e_{2} \mapsto e_{2}^{\prime}}{e_{1} \oplus e_{2} \mapsto e_{1} \oplus e_{2}^{\prime}} \quad \frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \oplus v_{2} \mapsto e_{1}^{\prime} \oplus v_{2}}
\]
- To leave the evaluation order unspecified:
\[
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \oplus e_{2} \mapsto e_{1}^{\prime} \oplus e_{2}} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{e_{1} \oplus e_{2} \mapsto e_{1} \oplus e_{2}^{\prime}}
\]
by lifting the constraint that the other side has to be a value.

\section*{Call-by-value}

\section*{Example}
- So far, function calls evaluate arguments to values before binding them to variables
\[
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} e_{2} \mapsto e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{v_{1} e_{2} \mapsto v_{1} e_{2}^{\prime}} \quad \overline{(\lambda x . e) v \mapsto e[v / x]}
\]
- This evaluation strategy is called call-by-value.
- Sometimes also called strict or eager
- "Call-by-value" historically refers to the fact that expressions are evaluated before being passed as parameters
- It is the default in most languages
- Consider \((\lambda x . x \times x)(1+2 \times 3)\)
- Then we can derive:
\[
\frac{\frac{2 \times 3 \mapsto 6}{1+2 \times 3 \mapsto 1+6}}{(\lambda x . x \times x)(1+2 \times 3) \mapsto(\lambda x . x \times x)(1+6)}
\]
- Next:
\[
\frac{1+6 \mapsto 7}{(\lambda x \cdot x \times x)(1+6) \mapsto(\lambda x \cdot x \times x) 7}
\]
- Finally:
\[
\overline{(\lambda x . x \times x) 7 \mapsto 7 \times 7 \mapsto 49}
\]

\section*{Interpreting call-by-value}

We evaluate subexpressions fully before substituting them for variables:
```

def eval (e: Expr): Value = e match {
case Let(x,e1,e2) => eval(subst(e2,eval(e1),x))
..
case Lambda(x,ty,e) => Lambda(x,ty,e)
case Apply(e1,e2) => eval(e1) match {
case Lambda(x,_,e) => apply(subst(e,eval(e2),x))
}
}

```

\section*{Call-by-name}
- Call-by-value may evaluate expressions unnecessarily (leading to nontermination in the worst case)
\[
(\lambda x .42) \text { loop } \mapsto(\lambda x .42) \text { loop } \mapsto \cdots
\]
- An alternative: substitute expressions before evaluating
\[
(\lambda x .42) \text { loop } \mapsto 42
\]
- To do this, remove second administrative rule, and generalize the computational rule
\[
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} e_{2} \mapsto e_{1}^{\prime} e_{2}} \quad \overline{\left(\lambda x . e_{1}\right) e_{2} \mapsto e_{1}\left[e_{2} / x\right]}
\]
- This evaluation strategy is called call-by-name (the "name" is the expression)

\section*{Example, revisited}

\section*{Interpreting call-by-name}
- Consider \((\lambda x . x \times x)(1+2 \times 3)\)
- Then in call-by-name we can derive:
\[
\overline{(\lambda x \cdot x \times x)(1+2 \times 3) \mapsto(1+(2 \times 3)) \times(1+(2 \times 3)))}
\]
- The rest is standard:
\[
\begin{aligned}
(1+(2 \times 3)) \times(1+(2 \times 3)) & \mapsto(1+6) \times(1+(2 \times 3)) \\
& \mapsto 7 \times(1+(2 \times 3)) \\
& \mapsto 7 \times(1+6) \\
& \mapsto 7 \times 7 \mapsto 49
\end{aligned}
\]

We substitute expressions for variables before evaluating.
```

 def eval (e: Expr): Value = e match {
 case Let(x,e1,e2) => eval(subst(e2,e1,x))
 ...
 case Lambda(x,ty,e) => Lambda(x,ty,e)
 case Apply(e1,e2) => eval(e1) match {
 case Lambda(x,_,e) => eval(subst(e,e2,x))
 }
 }

```
- Notice that we recompute the argument twice!

\section*{Call-by-name in Scala}

\section*{Simulating call-by-name}
- In Scala, can flag an argument as being passed by name by writing => in front of its type
- Such arguments are evaluated only when needed (but may be evaluated many times)
```

scala> def byName(x : => Int) = x + x
byName: (x: => Int)Int
scala> byName({ println("Hi\sqcupthere!"); 42})
Hi there!
Hi there!
res1: Int = 84

```
- This can be useful; sometimes we actually want to re-evaluate an expression (see next week's tutorial)
- Using functions, we can simulate passing \(e: \tau\) by name in a call-by-value language
- Simply pass it as a "delayed" expression \(\lambda() . e:\) unit \(\rightarrow \tau\).
- When its value is needed, apply to ().
- Scala's "by name" argument passing is basically syntactic sugar for this (using annotations on types to decide when to silently apply to ())

\section*{Comparison}

\section*{Best of both worlds?}
- Call-by-value evaluates every expression at most once
- ... whether or not its value is needed
- Performance tends to be more predictable
- Side-effects happen predictably
- Call-by-name only evaluates an expression if its value is needed
- Can be faster (or even avoid infinite loop), if not needed
- But may evaluate multiple times if needed more than once
- Reasoning about performance requires understanding when expressions are needed
- Side-effects may happen multiple times or not at all!
- A third strategy: evaluate each expression when it is needed, but then save the result
- If an expression's value is never needed, it never gets evaluated
- If it is needed many times, it's still only evaluated once.
- This is called call-by-need (or sometimes lazy) evaluation.
\begin{tabular}{|c|c|}
\hline  &  \\
\hline Laziness in Scala & Laziness in Scala \\
\hline
\end{tabular}
- Scala provides a lazy keyword
- Variables declared lazy are not evaluated until needed
- When they are evaluated, the value is memoized (that is, we store it in case of later reuse).
```

scala> lazy val x = {println("Hello"); 42}
x: Int = <lazy>
scala> x + x
Hello
res0: Int = 84

```
- Actually, laziness can also be emulated using references and variant types:
```

class Lazy[A] (a: => A) {
private var r: Either[A,() => A] = Right{() => a}
def force = r match {
case Left(a) => a
case Right(f) => {
val a = f()
r = Left(a)
a
}
}
}

```

\section*{Call-by-need}

\section*{Rules for call-by-need}
- The semantics of call-by-need is a little more complicated.
- We want to share expressions to avoid recomputation of needed subexpressions
- We can do this using a "memo table" \(\sigma:\) Loc \(\rightarrow\) Expr
- (similar to the store we used for references)
- Idea: When an expression \(e\) is bound to a variable, replace it with a label \(\ell\) bound to \(e\) in \(\sigma\)
- The labels are not regarded as values, though.
- When we try to evaluate the label, look up the expression in the store and evaluate it

\section*{\(\sigma, e \mapsto \sigma^{\prime}, e^{\prime}\)}
\[
\begin{gathered}
\overline{\sigma,\left(\lambda x \cdot e_{1}\right) e_{2} \mapsto \sigma\left[\ell:=e_{2}\right], e_{1}[\ell / x]} \\
\overline{\sigma, \operatorname{let} x=e_{1} \text { in } e_{2} \mapsto \sigma\left[\ell:=e_{1}\right], e_{2}[\ell / x]} \\
\overline{\sigma[\ell:=v], \ell \mapsto \sigma[\ell:=v], v} \quad \frac{\sigma, e \mapsto \sigma^{\prime}, e^{\prime}}{\sigma[\ell:=e], \ell \mapsto \sigma^{\prime}\left[\ell:=e^{\prime}\right], \ell}
\end{gathered}
\]
- When we reduce a function application or let, add expression to the memo table and replace with label
- When we encounter the label, look up its value or evaluate it (if not yet evaluated)

\section*{Rules for call-by-need}

\section*{Example, revisited again}

As with \(L_{\text {Ref }}\), we also need to adjust all of the rules to handle \(\sigma\).
\[
\begin{aligned}
& \sigma, e \mapsto \sigma^{\prime}, e^{\prime} \\
& \frac{\sigma, e_{1} \mapsto \sigma^{\prime}, e_{1}^{\prime}}{\sigma, e_{1} \oplus e_{2} \mapsto \sigma^{\prime}, e_{1}^{\prime} \oplus e_{2}} \frac{\sigma, e_{2} \mapsto \sigma^{\prime}, e_{2}^{\prime}}{\sigma, v_{1} \oplus e_{2} \mapsto \sigma^{\prime}, v_{1} \oplus e_{2}^{\prime}} \\
& \frac{\sigma, v_{1}+v_{2} \mapsto \sigma, v_{1}+\mathbb{N} v_{2}}{\sigma, v_{1} \times v_{2} \mapsto \sigma, v_{1} \times_{\mathbb{N}} v_{2}}
\end{aligned}
\]
- Consider \((\lambda x . x \times x)(1+2 \times 3)\)
- Then we can derive:
\[
\overline{[],(\lambda x \cdot x \times x)(1+2 \times 3) \mapsto[\ell=1+(2 \times 3)], \ell \times \ell}
\]
- Next, we have: \([\ell=1+(2 \times 3)], \ell \times \ell \mapsto[\ell=1+6], \ell \times \ell \mapsto[\ell=7], \ell \times \ell\)
- Finally, we can fill in the \(\ell\) labels:
\[
[\ell=7], \ell \times \ell \mapsto[\ell=7], 7 \times \ell \mapsto[\ell=7], 7 \times 7 \mapsto[\ell=7], 49
\]
- Notice that we compute the argument only once (but only when its value is needed).

\section*{Pure functional programming}
- Call-by-name/call-by-need interact badly with side-effects
- On the other hand, they support very strong equational reasoning about programs
- Haskell (and some other languages) are pure: they adopt lazy evaluation, and forbid any side-effects!
- This has strengths and weaknesses:
- (+) Easier to optimize, parallelize because side-effects are forbidden
- (+) Can be faster
- (-) but memoization has overhead (e.g. memory leaks) and performance is less predictable
- (-) Dealing with I/O, exceptions etc. requires major rethink
- Dealing with I/O and other side-effects in Haskell was a long-standing challenge
- Today's solution: use a type constructor IO a to "encapsulate" side-effecting computations
do \{ x <- readLn::IO Int ; print x\(\}\)
123
123
- Note: do-notation is also a form of comprehension
- Haskell's monads provide (equivalents of) the map and flatMap operations

\section*{Lazy data structures}
- We have (so far) assumed eager evaluation for data structures (pairs, variants)
- e.g. a pair is fully evaluated to a value, even if both components are not needed
- However, alternative (lazy) evaluation strategies can be considered for data structures too
- e.g. could consider a pair \(\left(e_{1}, e_{2}\right)\) to be a value; we only evaluate \(e_{1}\) if it is "needed" by applying fst:
ghci> fst (42, undefined) \(==42\)
- An example: streams (see next week's tutorial)
ghci> let ones = 1::ones
ghci> take 10 ones
- We are continuing our tour of language-design issues
- Today we covered:
- Call-by-value (the default)
- Call-by-name
- Call-by-need and lazy evaluation
- Next time:
- Exceptions
- Control abstractions

\section*{Elements of Programming Languages}

Lecture 16：Exceptions and Control Abstractions

\section*{James Cheney}

University of Edinburgh
November 22， 2016
－We have been considering several high－level aspects of language design：
－Type soundness
－References
－Evaluation order
－Today we complete this tour and examine：
－Exceptions
－Tail recursion
－Other control abstractions

\section*{Exceptions}
－In earlier lectures，we considered several approaches to error handling
－Exceptions are another popular approach（supported by Java，C＋＋，Scala，ML，Python，etc．）
－The throw e statement raises an exception e
－A try／catch block runs a statement；if an exception is raised，control transfers to the corresponding handler
try \｛ ．．．do something ．．．\}
catch（IOException e）
\｛．．．handle exception e ．．．\}
catch（NullPointerException e）
\｛．．．handle another exception．．．\}
－What if the try block allocated some resources？
－We should make sure they get deallocated！
－finally clause：gets run at the end whether or not exception is thrown
InputStream in＝null；
try \｛ in＝new FileInputStream（fname）； ．．．do something with in ．．．\}
catch（IOException exn）\｛．．．\}
finally \｛ if（in ！＝null）
\[
\text { in.close(); \} }
\]
－Java 7：＂try－with－resources＂encapsulates this pattern， for resources implementing AutoCloseable interface

\section*{Exceptions in Scala}
－In Java，potentially unhandled exceptions typically need to be declared in the types of methods
void writeFile（String filename）
throws IOException \｛
```

 InputStream in = new FileInputStream(filename);
    ```
    ... write to file ...
    in.close();
\}
－This means programmers using such methods know that certain exceptions need to be handled
－Failure to handle or declare an exception is a type error！
－（however，certain unchecked exceptions／errors do not need to be declared，e．g．NullPointerException）
－As you might expect，Scala supports a similar mechanism：
```

try { ... do something ... }
catch {
case exn: IOException =>
... handle IO exception...
case exn: NullPointerException =>
... handle null pointer exception...
} finally { . . cleanup ...}

```
－Main difference：The catch block is just a Scala pattern match on exceptions
－Scala allows pattern matching on types（via isInstanceOf／asInstanceOf）
－Also：throws clauses not required

\section*{Exceptions for shortcutting}
```

def product(l: List[Int]) = {

```
def product(l: List[Int]) = {
    object Zero extends Throwable
    object Zero extends Throwable
    def go(l: List[Int]): Int = l match {
    def go(l: List[Int]): Int = l match {
        case Nil => 1
        case Nil => 1
        case x::xs =>
        case x::xs =>
            if (x == 0) {throw Zero} else {x * go(xs)}
            if (x == 0) {throw Zero} else {x * go(xs)}
    }
    }
    try { go(l) }
    try { go(l) }
    catch { case Zero => 0 }
    catch { case Zero => 0 }
}
}
    Object Zero extends Throwable
```

 Object Zero extends Throwable
    ```
－potentially saving a lot of effort if the list contains 0
－Java：
－Exceptions are subclasses of java．lang．Throwable
－Method types must declare（most）possible exceptions in throws clause
－compile－time error if an exception can be raised and not caught or declared
－multiple＂catch＂blocks；＂finally＂clause to allow cleanup
－Scala：
－doesn＇t require declaring thrown exceptions：this becomes especially painful in a higher－order language．．．
－＂catch＂does pattern matching

\section*{Modeling exceptions}

\section*{Exceptions and types}
- Exception constructs are straightforward to typecheck:
\[
\tau::=\cdots \mid \text { exn }
\]
- Usually, the exn type is extensible (e.g. by subclassing)

\section*{\(\Gamma \vdash e: \tau\) for \(\mathrm{L}_{\mathrm{Exn}}\)}
\[
\frac{\Gamma \vdash e: \operatorname{exn}}{\Gamma \vdash \text { raise } e: \tau} \quad \frac{\Gamma \vdash e_{1}: \tau \quad \Gamma, x: \operatorname{exn} \vdash e_{2}: \tau}{\Gamma \vdash e_{1} \text { handle }\left\{x \Rightarrow e_{2}\right\}: \tau}
\]
- Note: raise e can have any type! (because raise e never returns)
- The return types of \(e_{1}\) and \(e_{2}\) in handler must match.

\section*{Interpreting exceptions}
- We can extend our Scala interpreter for \(L_{\text {Rec }}\) to manage exceptions as follows:
```

case class ExceptionV(v: Value) extends Throwable
def eval(e: Expr): Value = e match {
case Raise(e: Expr) => throw (ExceptionV(eval(e)))
case Handle(e1: Expr, x: Variable, e2:Expr) =>
try {
eval(e1)
} catch (ExceptionV(v)) {
eval(subst(e2,v,x))
}

```
- This might seem a little circular!

\section*{Semantics of exceptions}
- To formalize the semantics of exceptions, we need an auxiliary judgment e raises \(v\)
- Intuitively: this says that expression \(e\) does not finish normally but instead raises exception value \(v\)
\[
\begin{aligned}
& \text { e raises } v \\
& \\
& \begin{array}{ll}
\text { raise } v \text { raises } v & \frac{e_{1} \text { raises } v}{e_{1} \oplus e_{2} \text { raises } v}
\end{array} \frac{e_{2} \text { raises } v}{v_{1} \oplus e_{2} \text { raises } v} \\
& \\
& \\
& \text { if e then } e_{1} \text { else } e_{2} \text { raises } v
\end{aligned} \quad \ldots .
\]
- The most interesting rule is the first one; the rest are "administrative"

\section*{Semantics of exceptions}

\section*{Tail recursion}
- We can now define the small-step semantics of handle using the following additional rules:

\section*{\(e \mapsto e^{\prime}\)}
\[
\begin{gathered}
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \text { handle }\left\{x \Rightarrow e_{2}\right\} \mapsto e_{1}^{\prime} \text { handle }\left\{x \Rightarrow e_{2}\right\}} \\
\frac{v_{1} \text { handle }\left\{x \Rightarrow e_{2}\right\} \mapsto v_{1}}{} \\
\frac{e_{1} \text { raises } v}{e_{1} \text { handle }\left\{x \Rightarrow e_{2}\right\} \mapsto e_{2}[v / x]}
\end{gathered}
\]
- If \(e_{1}\) steps normally to \(e_{1}^{\prime}\), take that step
- If \(e_{1}\) raises an exception \(v\), substitute it in for \(x\) and evaluate \(e_{2}\)
- A function call is a tail call if it is the last action of the calling function. If every recursive call is a tail call, we say f is tail recursive.
- For example, this version of fact is not tail recursive:
```

def fact1(n: Int): Int =
if (n == 0) {1} else {n * (fact1(n-1))}

```
- But this one is:
```

def fact2(n: Int) = {

```
def fact2(n: Int) = {
    def go(n: Int, r: Int): Int =
    def go(n: Int, r: Int): Int =
        if (n == 0) {r} else {go(n-1,n*r)}
        if (n == 0) {r} else {go(n-1,n*r)}
    go(n,1)
    go(n,1)
}
```

}

```

\section*{Tail recursion and efficiency}
- Conditionals, while-loops, exceptions, "goto" are all form of control abstraction
- Continuations are a highly general notion of control abstraction, which can be used to implement exceptions (and much else).
- Material covered from here on is non-examinable.
- just for fun!
- (Depends on your definition of fun, I suppose)

\section*{Continuations}
- A continuation is a function representing "the rest of the computation"
- Any function can be put in "continuation-passing form"
- for example
```

def fact3[A](n: Int, k: Int => A): A =
if (n == 0) {k(1)}
else {fact3(n-1, {m => k (n*m)})}

```
- This says: if \(n\) is 0 , pass 1 to \(k\)
- otherwise, recursively call with parameters \(n-1\) and \(\lambda r . k(n \times r)\)
- "when done, multiply the result by \(n\) and pass to \(k\) "

How does this work?
```

def fact3[A](n: Int, k: Int => A): A =
if (n == 0) {k(1)} else {fact3(n-1, {r => k (n * r)})}

```
```

 fact3(3, \(\lambda x . x)\)
    ```
        fact3(3, \(\lambda x . x)\)
    \(\mapsto \quad \operatorname{fact} 3\left(2, \lambda r_{1} .(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\)
    \(\mapsto \quad \operatorname{fact} 3\left(2, \lambda r_{1} .(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\)
    \(\mapsto \quad \operatorname{fact} 3\left(1, \lambda r_{2} \cdot(\lambda r .(\lambda x \cdot x)(3 \times r))\left(2 \times r_{2}\right)\right)\)
    \(\mapsto \quad \operatorname{fact} 3\left(1, \lambda r_{2} \cdot(\lambda r .(\lambda x \cdot x)(3 \times r))\left(2 \times r_{2}\right)\right)\)
    \(\left.\mapsto \quad \operatorname{fact3} 30, \lambda r_{3} \cdot\left(\lambda r_{2} \cdot\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\left(2 \times r_{2}\right)\right)\left(1 \times r_{3}\right)\right)\)
    \(\left.\mapsto \quad \operatorname{fact3} 30, \lambda r_{3} \cdot\left(\lambda r_{2} \cdot\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\left(2 \times r_{2}\right)\right)\left(1 \times r_{3}\right)\right)\)
    \(\mapsto\left(\lambda r_{3} \cdot\left(\lambda r_{2} .\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\left(2 \times r_{2}\right)\right)\left(1 \times r_{3}\right)\right) 1\)
    \(\mapsto\left(\lambda r_{3} \cdot\left(\lambda r_{2} .\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\left(2 \times r_{2}\right)\right)\left(1 \times r_{3}\right)\right) 1\)
    \(\mapsto\left(\lambda r_{2} \cdot\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\left(2 \times r_{2}\right)\right)(1 \times 1)\)
    \(\mapsto\left(\lambda r_{2} \cdot\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)\left(2 \times r_{2}\right)\right)(1 \times 1)\)
    \(\mapsto\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)(2 \times 1)\)
    \(\mapsto\left(\lambda r_{1} \cdot(\lambda x \cdot x)\left(3 \times r_{1}\right)\right)(2 \times 1)\)
    \(\mapsto(\lambda x \cdot x)(3 \times 2)\)
    \(\mapsto(\lambda x \cdot x)(3 \times 2)\)
    \(\mapsto 6\)
```

 \(\mapsto 6\)
    ```

Interpreting \(L_{\text {Arith }}\) using continuations
```

def eval[A](e: Expr, k: Value => A): A = e match {
// Arithmetic
case Num(n) => k(NumV(n))
case Plus(e1,e2) =>
eval(e1,{case NumV(v1) =>
eval(e2,{case NumV(v2) => k(NumV(v1+v2))})})
case Times(e1,e2) =>
eval(e1,{case NumV(v1) =>
eval(e2,{case NumV(v2) => k(NumV(v1*v2))})})
}

```

\section*{Interpreting \(\mathrm{L}_{\text {If }}\) using continuations}
```

def eval[A](e: Expr, k: Value => A): A = e match {
// Booleans
case Bool(n) => k(BoolV(n))
case Eq(e1,e2) =>
eval(e1,{v1 =>
eval(e2,{v2 => k(BoolV(v1 == v2))})})
case IfThenElse(e,e1,e2) =>
eval(e,{case BoolV(v) =>
if(v) { eval(e1,k) } else { eval(e2,k) } })

```
\}

Interpreting \(L_{\text {Let }}\) using continuations
```

def eval[A](e: Expr, k: Value => A): A = e match {
// Let-binding
case Let(e1,x,e2) =>
eval(e1,{v =>
eval(subst(e2,v,x),k)})
}

```
Interpreting \(L_{\text {Rec }}\) using continuations
```

def eval[A](e: Expr, k: Value => A): A = e match {
// Functions
case Lambda(x,ty,e) => k(LambdaV(x,ty,e))
case Rec(f,x,ty1,ty2,e) => k(RecV(f,x,ty1,ty2,e))
case Apply(e1,e2) =>
eval(e1, {v1 =>
eval(e2, {v2 => v2 match {
case LambdaV(x,ty,e) => eval(subst(e,v2,x), k)
case RecV(f,x,ty1,ty2,e) =>
eval(subst(subst(e,v2,x),v1,f),k)
}})})
}

```

\section*{Interpreting \(\mathrm{L}_{\text {Exn }}\) using continuations}

To deal with exceptions，we add a second continuation \(h\) for handling exceptions．（Cases seen so far just pass h along．）
```

def eval[A](e: Expr, h: Value => A,
k: Value => A): A = e match {
// Exceptions
case Raise(e0) => eval(e0,h,h)
case Handle(e1,x,e2) =>
eval(e1,{v => eval(subst(e2,v,x),h,k)},k)
}

```

When raising an exception，we forget \(k\) and pass to \(h\) ．
When handling，we install new handler using e2
－Today we completed our tour of
－Type soundness
－References and resource management
－Evaluation order
－Exceptions and control abstractions（today）
－which can interact with each other and other language features in subtle ways
－Next time：
－review lecture
－information about exam，reading

\section*{Elements of Programming Languages}

Course review

\author{
James Cheney \\ University of Edinburgh
}

November 25, 2016
- We've now covered
- Basic concepts: ASTs, evaluation, typing, names, scope
- Common elements of any programming language
- Programming in the large: components, abstractions
- Language design issues
- Today:
- Review of course, pointers to related reading
- Information about the exam
- Conclusions
Exam information Conclusions

\section*{Variables and scope}
- Boolean expressions, equality tests, and conditionals
- Typing judgment \(\vdash e: \tau\)
- Typing rules
- Type soundness and static vs. dynamic typing
- Reading: PFPL2 4.1-4.2, CPL 5.4.2, 6.1, 6.2
- Variables: symbols denoting other things
- Substitution: replacing variables with expressions/values
- Scope and binding: introducing and using variables
- Free variables and \(\alpha\)-equivalence
- Impact of variables, scope and binding on evaluation and typing (using let-binding to illustrate)
- Reading: PFPL2 1.2, 3.1-3.2, CPL 4.2, 7.1

Course review

\section*{Functions and recursion}

\section*{Data structures}
- Named (non-recursive) functions
- Static vs. dynamic scope
- Anonymous functions
- Recursive functions
- The function type, \(\tau_{1} \rightarrow \tau_{2}\)
- Reading: PFPL2 8, 19.1-2; CPL 4.2, 5.4.3
- Pairs and pair types \(\tau_{1} \times \tau_{2}\), which combine two or more data structures
- Variant/choice types \(\tau_{1}+\tau_{2}\), which represent a choice between two or more data structures
- Special cases unit, empty
- Reading: PFPL2 10.1, 11.1, CPL 5.4.4

\section*{Records, variants and subtyping}
- Records, generating from pairs to structures with named fields
- Named variants, generalizing from binary choices to named constructors (e.g. datatypes, case classes)
- Type abbreviations and definitions
- Subtyping (e.g. width subtyping, depth subtyping for records)
- Covariance and contravariance; subtyping for pair, choice, function types
- Reading: CPL 6.5; PFPL2 10.2, 11.2-3, 24.1-3
- The idea of thinking of the same code as having many different types
- Parametric polymorphism: abstracting over a type parameter (variable)
- Modeling polymorphism using types \(\forall A . \tau\)
- High-level coverage of type inference, e.g. in Scala
- [non-examinable] Hindley-Milner and let-bound polymorphism
- Reading: PFPL2 16.1; CPL 6.3-4

\section*{Programs, modules and interfaces}

\section*{Objects and classes}
- "Programs" as collections of definitions (with an entry point)
- Namespaces and packages: collecting related components together, using "dot" syntax to structure names; importing namespaces to allow local usage
- The idea of abstract data types: a type with associated operations, with hidden implementation
- Modules (e.g. Scala's objects) and interfaces (e.g. Scala's traits)
- What it means for a module to "implement" an interface
- Reading: CPL 9, PFPL2 42.1-2, 44.1
- Objects and how they differ from records or modules: encapsulation of local state; self-reference
- Classes and how they differ from interfaces; abstract classes; dynamic dispatch
- Instantiating classes to obtain objects
- Inheritance of functionality between objects or classes; multiple inheritance and its problems
- Run-time type tests and coercions (isInstanceOf, asInstanceOf)
- Reading: CPL 10, 12.5, 13.1-2

\section*{Object-oriented functional programming}

\section*{Imperative programming}
- Advanced OOP concepts:
- inner classes, nested classes, anonymous classes/objects
- Generics: Parameterized types and parametric polymorphism; interaction with subtyping; type bounds
- Traits as mixins: implementing multiple traits providing orthogonal functionality; comparison with multiple inheritance
- Function types as interfaces
- List comprehensions and map, flatMap and filter functions
- Reading: Odersky and Rompf, Unifying Functional and Object-Oriented Programming with Scala, CACM, Vol. 57 No. 4, Pages 76-86, April 2014
- LWhile: a language with statements, variables, assignment, conditionals and loops
- Interpreting \(\mathrm{L}_{\text {While }}\) using state or store
- Operational semantics of \(L_{\text {While }}\)
- [non-examinable] Structured vs unstructured programming
- [non-examinable] Other control flow constructs: goto, switch, break/continue
- Reading: CPL 4.4, 5.1-2, 8.1

\section*{Small-step semantics and type safety}

\section*{References and resource management}
- Small-step evaluation relation \(e \mapsto e^{\prime}\), and advantages over big-step semantics for discussing type safety
- Induction on derivations
- Type soundness: decoposition into preservation and progress lemmas
- Representative cases for \(L_{\text {If }}\)
- [non-examinable] Type soundness for \(L_{\text {Rec }}\)
- Reading: CPL 6.1-2, PFPL2 5.1-2, 2.4, 7.2, 6.1-2
- Reconciling references and mutability with a "functional" language like \(\mathrm{L}_{\text {Rec }}\)
- Semantics and typing for references
- Potential interactions with subtyping; problem with reference / array types being covariant in e.g. Java
- [non-examinable] How references + polymorphism can violate type soundness
- Resources and allocation/deallocation
- Reading: PFPL2 35.1-3, CPL 5.4.5, 13.3

\section*{Evaluation strategies}

\section*{Exceptions and continuations}
－Evaluation order；varying small－step＂administrative＂ rules to get left－to－right，right－to－left or unspecified operand evaluation order
－Evaluation strategies for function arguments（or more generally for expressions bound to variables）：
－Call－by－value／eager
－Call－by－name
－Call－by－need／lazy evaluation
－Interactions between evaluation strategies and side－effects
－Lazy data structures and pure functional programming （cf．Haskell）
－Reading：PFPL2 36．1，CPL 7．3， 8.4
－Exceptions，illustrated in Java and Scala（throw， try．．．catch．．．finally）
－Exceptions more formally：typing and small－step evaluation rules
－Tail recursion
－［non－examinable］Continuations
－Reading：CPL 8．2－3，PFPL2 29．1－3，PFPL2 30．1－2

\section*{Reading summary}
－The following sections of CPL are recommended to provide high－level explanation and background： \(1,4.1-2,4.4,5.4,6.1-5,7.1,7.3,8.1-4,9,10,12.5\) ， 13．1－3
－The following sections of PFPL2 are recommended to complement the formal content of the course：
1，2，3．1－2，4．1－2，5．1－2，6．1－2，7．1－2，8，19．1－2，10．1－2， 11．1－3，16．1，24．1－3，35．1－3，36．1，42．1－2， 44.1
－（warning：chapter references for 1 st edition differ！）
－In general，exam questions should be answerable using ideas introduced／explained in lectures or tutorials
－（please ask，if something mentioned in lecture slides is unclear and not explained in associated readings）

\section*{Exam format}

\section*{Expectations}
- Written exam, 2 hours
- Three (multi-part) questions
- Answer Question \(1+\) EITHER Question 2 or 3
- Closed-book (no notes, etc.), but...
- Exam will not be about memorizing inference rules any rules needed to construct derivations will be provided in a supplement
- Check University exam schedule!
- Exam in December \(\Longleftrightarrow\) you are a visiting student AND only here for semester 1
- Exam in April/May \(\Longleftrightarrow\) you are here for full academic year
- Several typical kinds of questions...
- Show how to use / apply some technical content of the course (typing rules, evaluation, ) - possibly in a slightly different setting than in lectures/assignments
- Define concepts; explain differences/strengths/weaknesses of differerent ideas in PL design
- Show how to extrapolate or extend concepts or technical ideas covered in lectures (possibly in ways covered in more detail in reading or tutorials but not in lectures)
- Explain and perform simple examples of inductive proofs (no more complex than those covered in lectures)

\section*{Sample exam}
- A sample exam is available now on course web page
- Format: same as real exam
- Questions have not gone through same process, so:
- There may be errors/typos (hopefully not on real exam)
- The difficulty level may not be calibrated to the real

Conclusions exam (though I have tried to make it comparable)
- In particular: just because a topic is covered/not covered on the sample exam does NOT tell you it will be / will not be covered on the real exam!
- There will be a exam review session on Friday December 2 at 2:10pm (usual lecture time/place, 7 Bristo Square LT1)

\section*{What didn't we cover?}

\section*{Other relevant courses}
- Lots! (course is already dense as it is)
- Scala: implicits, richer pattern matching, concurrency, ...
- More generally:
- language-support for concurrent programming (synchronized, threads, locks, etc.)
- language support for other computational models (databases, parallel CPU, GPU, etc.)
- Haskell-style type classes/overloading
- Logic programming
- Program verification / theorem proving
- Analysis and optimisation
- Implementation and compilation of modern languages
- Virtual machines
- There is a lot more to Programming Languages than we can cover in just one course..
- The following UG4 courses cover more advanced topics related to programming languages:
- Advances in Programming Languages
- Types and Semantics for Programming Languages
- Secure Programming
- Parallel Programming Languages and Systems
- Compiler Optimisation
- Formal Verification
- Many potential supervisors for PL-related UG4, MSc, PhD projects in Informatics - ask if interested!

\section*{Other programming languages resources}

Scottish Programming Languages Seminar, http://www.dcs.gla.ac.uk/research/spls/
- EdLambda, Edinburgh's mostly functional programming meetup, http://www.edlambda.co.uk
- Informatics PL Interest Group,
http://wcms.inf.ed.ac.uk/Ifcs/research/groups-and-projects/pl/programming-languages-interest-group
- Major conferences: ICFP, POPL, PLDI, OOPSLA, ESOP, CC
- Major journals: ACM TOPLAS, Journal of Functional Programming
- This has been the second time of teaching this course Elements of Programming Languages
- \(>70\) students registered last year, \(>40\) this year
- I hope you've enjoyed the course! I did, though there are still some things that probably need work...
- Please do provide feedback on the course (both what worked and what didn't)
- Thanks in advance on behalf of future EPL students!```

