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What is programming?

Computers are deterministic machines, controlled by
low-level (usually binary) machine code instructions.

A computer can [only] do whatever we know how to
order it to perform (Ada Lovelace, 1842)

Programming is communication:

between a person and a machine, to tell the machine
what to do
between people, to communicate ideas about algorithms
and computation
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From machine code to programming languages

The first programmers wrote all of their code directly in
machine instructions

ultimately, these are just raw sequences of bits.

Such programs are extremely difficult to write, debug or
understand.

Simple “assembly languages” were introduced very early
(1950’s) as a human-readable notation for machine code

FORTRAN (1957) — one of the first “high-level”
languages (procedures, loops, etc.)
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What is a programming language?

For the purpose of this course, a programming language
is a formal, executable language for computations

Non-examples:

English (not formal)
First-order Logic (formal, but not executable in general)
HTML4 (formal, executable but not computational)

(HTML is in a gray area — with JavaScript or HTML5
extensions it is a lot more “computational”)
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Why are there so many?

Imperative/procedural: FORTRAN, COBOL, Algol,
Pascal, C

Object-oriented, untyped: Simula, Smalltalk, Python,
Ruby, JavaScript

Object-oriented, typed: C++, Java, Scala, C#

Functional, untyped: LISP, Scheme, Racket

Functional, typed: ML, OCaml, Haskell, (Scala), F#

Logic/declarative: Prolog, Curry, SQL
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What do they have in common?

All (formal) languages have a written form: we call this
(concrete) syntax

All (executable) languages can be implemented on
computers: e.g. by a compiler or interpreter

All programming languages describe computations: they
have some computational meaning, orsemantics

In addition, most languages provide abstractions for
organizing, decomposing and combining parts of
programs to solve larger problems.
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What are the differences?

There are many so-called “programming language paradigms”:

imperative (variables, assignment, if/while/for,
procedures)

object-oriented (classes, inheritance, interfaces,
subtyping)

typed (statically, dynamically, strongly, un/uni-typed)

functional (λ-calculus, pure, lazy)

logic/declarative (computation as deduction, query
languages)
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Languages, paradigms and elements

A great deal of effort has been expended trying to find
the “best” paradigm, with no winner declared so far.

In reality, they all have strengths and weaknesses, and
almost all languages make compromises or synthesize
ideas from several “paradigms”.

This course emphasizes different programming language
features, or elements

Analogy: periodic table of the elements in chemistry

Goal: understand the basic components that appear in a
variety of languages, and how they “combine” or “react”
with one another.
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Applicability

Major new general-purpose languages come along every
decade or so.

Hence, few programmers or computer scientists will
design a new, widely-used general purpose language, or
write a compiler
However, domain-specific languages are increasingly
used, and the same principles of design apply to them

Moreover, understanding the principles of language design
can help you become a better programmer

Learn new languages / recognize new features faster
Understand when and when not to use a given feature

Assignments will cover practical aspects of programming
languages: interpreters and DSLs/translators
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Course Administration
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Staff

Lecturer: James Cheney <jcheney@inf.ed.ac.uk>, IF
5.29

Office hours: Monday 11:30-12:30, or by appointment

TA: TBA
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Format

20 lectures (Tu/F 1410–1500)

2 intro/review [non-examinable]
2 guest lectures [non-examinable]
16 core material [examinable]

1 two-hour lab session (September 28, 1210–1400)

8 one-hour tutorial sessions, starting in week 3 (times
and groups TBA)

All of these activities are part of the course and may cover
examinable material, unless explicitly indicated.
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Feedback and Assessment

Coursework:

Assignment 1: Lab exercise sheet, available during
week 2, due during week 3, worth 0% of final grade
Assignment 2: available during week 3, due week 6,
worth 0% of final grade.
Assignment 3: available during week 6, due week 10,
worth 25% of final grade.
The first two assignments are marked for formative
feedback only, but the third builds on the first two.

One (written) exam: worth 75% of final grade.
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Scala

The main language for this course will be Scala

Scala offers an interesting combination of ideas from
functional and object-oriented programming styles
We will use Scala (and other languages) to illustrate key
ideas
We will also use Scala for the assignments

However, this is not a “course on Scala”

You will be expected to figure out certain things for
yourselves (or ask for help)
We will not teach every feature of Scala, nor are you
expected to learn every dark corner
In fact, part of the purpose of the course is to help you
recognize such dark corners and avoid them unless you
have a good reason...

Introduction Course Administration Course Outline

Recommended reading

There is no official textbook for the course that we will
follow exactly

However, the following are recommended readings to
complement the course material:

Practical Foundations for Programming Languages,
second edition, (PFPL2), by Robert Harper. Available
online from the author’s webpage and through the
University Library’s ebook access.
Concepts in Programming Languages (CPL), by John
Mitchell. Available through the University Library’s
ebook access.

The webpage lecture outline will indicate relevant sections
and additional suggested readings
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Course Outline
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Wadler’s Law

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power of
its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

Wadler’s law is an example of a phenomenon called
“bike-shedding”:

the number of people who feel qualified to comment on
an issue is inversely proportional to the expertise required
to understand it
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Syntax

This course is primarily about language design and
semantics.

As a foundation for this, we will necessarily spend some
time on abstract syntax trees (and programming with
them in Scala)

We will cover: Name-binding, substitution, static vs.
dynamic scope

We will not cover: Concrete syntax, lexing, parsing,
precedence (but Compiling Techniques does)
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Interpreters, Compilers and Virtual Machines

Suppose we have a source programming language LS , a
target language LT , and an implementation language LI

An interpreter for LS is an LI program that executes LS
programs.
When both LS and LI are low-level (e.g. LS = JVM, LI
= x86), an interpreter for L is called a virtual machine.
A translator from LS to LT is an LI program that
translates programs in LS to “equivalent” programs in
LT .
When LT is low-level, a translator to LT is usually called
a compiler.

In this course, we will use interpreters to explore different
language features.
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Semantics

How can we understand the meaning of a
language/feature, or compare different
languages/features?

Three basic approaches:

Operational semantics defines the meaning of a program
in terms of “rules” that explain the step-by-step
execution of the program
Denotational semantics defines the meaning of a
program by interpreting it in a mathematical structure
Axiomatic semantics defines the meaning of a program
via logical specifications and laws

All three have strengths and weaknesses

We will focus on operational semantics in this course: it
is the most accessible and flexible approach.
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The three most important things

The three most important considerations for
programming language design are:

(Data) Abstraction
(Control) Abstraction
(Modular) Abstraction

We will investigate different language elements that
address the need for these abstractions, and how different
design choices interact.

In particular, we will see how types offer a fundamental
organizing principle for programming language features.
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Data Structures and Abstractions

Data structures provide ways of organizing data:

option types vs. null values
pairs/record types;
variant/union types;
lists/recursive types;
pointers/references

Data abstractions make it possible to hide data
structure choices:

overloading (ad hoc polymorphism)
generics (parametric polymorphism)
subtyping
abstract data types
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Control Structures and Abstractions

Control structures allow us to express flow of control:

goto
for/while loops
case/switch
exceptions

Control abstractions make it possible to hide
implementation details:

procedure call/return
function types/higher-order functions
continuations
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Design dimensions and modularity

Programming “in the large” requires considering several
cross-cutting design dimensions:

eager vs. lazy evaluation
purity vs. side-effects
static vs. dynamic typing

and modularity features

modules, namespaces
objects, classes, inheritance
interfaces, information hiding
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The art and science of language design

Language design is both an art and a science

The most popular languages are often not the ones with
the cleanest foundations (and vice versa)

This course teaches the science: formalisms and
semantics

Aesthetics and “good design” are hard to teach (and hard
to assess), but one of the assignments will give you an
opportunity to experiment with domain-specific language
design
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Course goals

By the end of this course, you should be able to:

1 Investigate the design and behaviour of programming
languages by studying implementations in an interpreter

2 Employ abstract syntax and inference rules to understand
and compare programming language features

3 Design and implement a domain-specific language
capturing a problem domain

4 Understand the design space of programming languages,
including common elements of current languages and how
they are combined to construct language designs

5 Critically evaluate the programming languages in current
use, acquire and use language features quickly, recognise
problematic programming language features, and avoid
their (mis)use.

Introduction Course Administration Course Outline

Relationship to other courses

Compiling Techniques

covers complementary aspects of PL implementation,
such as lexical analysis and parsing.
also covers compilation of imperative programs to
machine code

Introduction to Theoretical Computer Science

covers formal models of computation (Turing machines,
etc.)
as well as some λ-calculus and type theory

In this course, we focus on interpreters, operational
semantics, and types to understand programming
language features.

There should be relatively little overlap with CT or ITCS.
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Summary

Today we covered:

Background and motivation for the course
Course administration
Outline of course topics

Next time:

Concrete and abstract syntax
Programming with abstract syntax trees (ASTs)
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Today

We will introduce some basic tools used throughout the
course:

Concrete vs. abstract syntax

Abstract syntax trees

Induction over expressions
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LArith

We will start out with a very simple (almost trivial)
“programming language” called LArith to illustrate these
concepts

Namely, expressions with integers, + and ×
Examples:

1 + 2 ---> 3

1 + 2 * 3 ---> 7

(1 + 2) * 3 ---> 9
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Concrete vs. abstract syntax

Concrete syntax: the actual syntax of a programming
language

Specify using context-free grammars (or generalizations)
Used in compiler/interpreter front-end, to decide how to
interpret strings as programs

Abstract syntax: the “essential” constructs of a
programming language

Specify using so-called Backus Naur Form (BNF)
grammars
Used in specifications and implementations to describe
the abstract syntax trees of a language.
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CFG vs. BNF

Context-free grammar giving concrete syntax for
expressions

E → E PLUS F | F
F → F TIMES F | NUM | LPAREN E RPAREN

Needs to handle precedence, parentheses, etc.

Tokenization (+→ PLUS, etc.), comments, whitespace
usually handled by a separate stage
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BNF grammars

BNF grammar giving abstract syntax for expressions

Expr 3 e ::= e1 + e2 | e1 × e2 | n ∈ N

This says: there are three kinds of expressions

Additions e1 + e2, where two expressions are combined
with the + operator
Multiplications e1 × e2, where two expressions are
combined with the × operator
Numbers n ∈ N

Much like CFG rules, we can ”derive” more complex
expressions:

e → e1 + e2 → 3 + e2 → 3 + (e3 × e4)→ · · ·
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BNF conventions

We will usually use BNF-style rules to define abstract
syntax trees

and assume that concrete syntax issues such as
precedence, parentheses, whitespace, etc. are handled
elsewhere.

Convention: the subscripts on occurrences of e on the
RHS don’t affect the meaning, just for readability

Convention: we will freely use parentheses in abstract
syntax notation to disambiguate

e.g.
(1 + 2)× 3 vs. 1 + (2× 3)
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Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract
syntax trees, for example:

+

1 2

+

1 ×

2 3

×

+

1 2

3

These can be represented in a program as trees, or in other
ways (which we will cover in due course)
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Languages for examples

We will use several languages for examples throughout
the course:

Java: typed, object-oriented
Python: untyped, object-oriented with some functional
features
Haskell: typed, functional
Scala: typed, combines functional and OO features
Sometimes others, to discuss specific features

You do not need to already know all these languages!
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ASTs in Java

In Java ASTs can be defined using a class hierarchy:

abstract class Expr {}

class Num extends Expr {

public int n;

Num(int _n) {

n = _n;

}

}
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ASTs in Java

In Java ASTs can be defined using a class hierarchy:

...

class Plus extends Expr {

public Expr e1;

public Expr e2;

Plus(Expr _e1, Expr _e2) {

e1 = _e1;

e2 = _e2;

}

}

class Times extends Expr {... // similar

}
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ASTs in Java

Traverse ASTs by adding a method to each class:

abstract class Expr {

abstract public int size();

}

class Num extends Expr { ...

public int size() { return 1;}

}

class Plus extends Expr { ...

public int size() {

return e1.size(e1) + e2.size() + 1;

}

}

class Times extends Expr {... // similar

}
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ASTs in Python

Python is similar, but shorter (no types):

class Expr:

pass # "abstract"

class Num(Expr):

def __init__(self,n):

self.n = n

def size(self): return 1

class Plus(Expr):

def __init__(self,e1,e2):

self.e1 = e1

self.e2 = e2

def size(self):

return self.e1.size() + self.e2.size() + 1

class Times(Expr): # similar...
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ASTs in Haskell

In Haskell, ASTs are easily defined as datatypes:

data Expr = Num Integer

| Plus Expr Expr

| Times Expr Expr

Likewise one can easily write functions to traverse them:

size :: Expr -> Integer

size (Num n) = 1

size (Plus e1 e2) =

(size e1) + (size e2) + 1

size (Times e1 e2) =

(size e1) + (size e2) + 1
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ASTs in Scala

In Scala, can define ASTs conveniently using case classes:
abstract class Expr

case class Num(n: Integer) extends Expr

case class Plus(e1: Expr, e2: Expr) extends Expr

case class Times(e1: Expr, e2: Expr) extends Expr

Again one can easily write functions to traverse them
using pattern matching:
def size (e: Expr): Int = e match {

case Num(n) => 1

case Plus(e1,e2) =>

size(e1) + size(e2) + 1

case Times(e1,e2) =>

size(e1) + size(e2) + 1

}
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Creating ASTs

Java:

new Plus(new Num(2), new Num(2))

Python:

Plus(Num(2),Num(2))

Haskell:

Plus(Num(2),Num(2))

Scala: (the “new” is optional for case classes:)

new Plus(new Num(2),new Num(2))

Plus(Num(2),Num(2))
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Precedence, Parentheses and Parsimony

Infix notation and operator precedence rules are
convenient for programmers (looks like familiar math) but
complicate language front-end

Some languages, notably LISP/Scheme/Racket, eschew
infix notation.

All programs are essentially so-called S-Expressions:

s ::= a | (a s1 · · · sn)

so their concrete syntax is very close to abstract syntax.

For example

1 + 2 ---> (+ 1 2)

1 + 2 * 3 ---> (+ 1 (* 2 3))

(1 + 2) * 3 ---> (* (+ 1 2) 3)
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The three most important reasoning techniques

The three most important reasoning techniques for
programming languages are:

(Mathematical) induction

(over N)

(Structural) induction

(over ASTs)

(Rule) induction

(over derivations)

We will briefly review the first and present structural
induction.

We will cover rule induction later.
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Induction

Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

P(0) holds

for any n ∈ N, if P(n) holds then P(n + 1) also holds

Then P(n) holds for all n ∈ N.
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Induction over expressions

A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

P(n) holds for every number n ∈ N

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 + e2) also holds

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 × e2) also holds

Then P(e) holds for all expressions e.

Note that we are performing induction over abstract
syntax trees, not numbers!
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Proof of expression induction principle

Define the size of an expression in the obvious way:

size(n) = 1

size(e1 + e2) = size(e1) + size(e2) + 1

size(e1 × e2) = size(e1) + size(e2) + 1

Given P(−) satisfying the assumptions of expression induction,
we prove the property

Q(n) = for all e with size(e) < n we have P(e)

Since any expression e has a finite size, P(e) holds for any
expression.
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Proof of expression induction principle

Proof.

We prove that Q(n) holds for all n by induction on n:

The base case n = 0 is vacuous

For n + 1, then assume Q(n) holds and consider any e
with size(e) < n + 1. Then there are three cases:

if e = m ∈ N then P(e) holds by part 1 of expression
induction principle
if e = e1 + e2 then size(e1) < size(e) ≤ n and similarly
for size(e2) < size(e) ≤ n. So, by induction, P(e1) and
P(e2) hold, and by part 2 of expression induction
principle P(e) holds.
if e = e1 × e2, the same reasoning applies.
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Summary

We covered:

Concrete vs. Abstract syntax
Abstract syntax trees
Abstract syntax of LArith in several languages
Structural induction over syntax trees

This might seem like a lot to absorb, but don’t worry! We
will revisit and reinforce these concepts throughout the
course.

Next time:

Evaluation
A simple interpreter
Operational semantics rules
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Overview

Last time:

Concrete vs. abstract syntax
Programming with abstract syntax trees
A taste of induction over expressions

Today:

Evaluation
A simple interpreter
Modeling evaluation using rules
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Values

Recall LArith expressions:

Expr 3 e ::= e1 + e2 | e1 × e2 | n ∈ N

Some expressions, like 1,2,3, are special

They have no remaining “computation” to do

We call such expressions values.

We can define a BNF grammar rule for values:

Value 3 v ::= n ∈ N
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Evaluation, informally

Given an expression e, what is its value?

If e = n, a number, then it is already a value.
If e = e1 + e2, evaluate e1 to v1 and e2 to v2. Then add
v1 and v2, the result is the value of e.
If e = e1 × e2, evaluate e1 to v1 and e2 to v2. Then
multiply v1 and v2, the result is the value of e.
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Evaluation, in Scala

If e = n, a number, then it is already a value.

If e = e1 + e2, evaluate e1 to v1 and e2 to v2. Then add
v1 and v2, the result is the value of e.

If e = e1 × e2, evaluate e1 to v1 and e2 to v2. Then
multiply v1 and v2, the result is the value of e.

def eval(e: Expr): Int = e match {

case Num(n) => n

case Plus(e1,e2) => eval(e1) + eval(e2)

case Times(e1,e2) => eval(e1) * eval(e2)

}
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Example

eval




+

1 ×

2 3




= eval(1)+eval




×

2 3
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Example

eval(1)+eval




×

2 3


 = eval(1)+(eval(2)×eval(3))

eval(1) + (eval(2)× eval(3)) = 1 + (2× 3) = 1 + 6 = 7
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Expression evaluation, more formally

To specify and reason about evaluation, we use a
evaluation judgment.

Definition (Evaluation judgment)

Given expression e and value v , we say v is the value of e if
evaluating e results in v , and we write e ⇓ v to indicate this.

(A judgment is a relation between abstract syntax trees.)

Examples:

1 + 2 ⇓ 3 1 + 2× 3 ⇓ 7 (1 + 2)× 3 ⇓ 9
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Evaluation of Values

A value is already evaluated. So, for any v , we have
v ⇓ v .

We can express the fact that v ⇓ v always holds (for any
v) as follows:

v ⇓ v

This is a rule that says that v evaluates to v always (no
preconditions)

So, for example, we can derive:

0 ⇓ 0 1 ⇓ 1 · · ·
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Evaluation of Addition

How to evaluate expression e1 + e2?

Suppose we know that e1 ⇓ v1 and e2 ⇓ v2.

Then the value of e1 + e2 is the number we get by adding
numbers v1 and v2.

We can express this as follows:

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

This is a rule that says that e1 + e2 evaluates to v1 +N v2
provided e1 evaluates to v1 and e2 evaluates to v2

Note that we write +N for the mathematical function
that adds two numbers, to avoid confusion with the
abstract syntax tree v1 + v2.
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Expression evaluation: Summary

Multiplication can be handled exactly like addition.

We will define the meaning of LArith expressions using the
following rules:

e ⇓ v

v ⇓ v
e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

e1 ⇓ v1 e2 ⇓ v2
e1 × e2 ⇓ v1 ×N v2

This evaluation judgment is an example of big-step
semantics (or natural semantics)

so-called because we evaluate the whole expression “in
one step”
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Examples

We can use these rules to derive evaluation judgments for
complex expressions:

1 ⇓ 1 2 ⇓ 2
1 + 2 ⇓ 3

1 ⇓ 1
2 ⇓ 2 3 ⇓ 3

2 ∗ 3 ⇓ 6

1 + (2 ∗ 3) ⇓ 7

1 ⇓ 1 2 ⇓ 2
1 + 2 ⇓ 3 3 ⇓ 3

(1 + 2) ∗ 3 ⇓ 9

These figures are derivation trees showing how we can
derive a conclusion from axioms

The rules govern how we can construct derivation trees.
A leaf node must match a rule with no preconditions
Other nodes must match rules with preconditions.
(Order matters.)

Note that derivation trees “grow up” (root is at the
bottom)
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Totality and Structural induction

Question: Given any expression e, does it evaluate to a
value?

To answer this question, we can use structural induction:

Induction on structure of expressions

Given a property P of expressions, if:

P(n) holds for every number n ∈ N

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 + e2) also holds

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 × e2) also holds

Then P(e) holds for all expressions e.
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Proof by structural induction

Let’s illustrate with an example

Theorem

If e is an expression, then there exists v ∈ N such that e ⇓ v
holds.

Proof: Base case.

If e = n then e is already a value. Take v = n, then we can
derive

e ⇓ n
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Proof by structural induction

Proof: Inductive case 1.

If e = e1 + e2 then suppose e1 ⇓ v1 and e2 ⇓ v2 for some
v1, v2. Then we can use the rule:

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

to conclude that there exists v = v1 +N v2 such that e ⇓ v
holds.

Note that again it’s important to distinguish v1 +N v2 (the
number) from v1 + v2 the expression.
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Proof by structural induction

Proof: Inductive case 2.

If e = e1 × e2 then suppose e1 ⇓ v1 and e2 ⇓ v2 for some
v1, v2. Then we can use the rule:

e1 ⇓ v1 e2 ⇓ v2
e1 × e2 ⇓ v1 ×N v2

to conclude that there exists v = v1 ×N v2 such that e ⇓ v
holds.

This case is basically identical to case 1 (modulo + vs.
×).

From now on we will typically skip over such “essentially
identical” cases (but it is important to really check them).
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Uniqueness

We can also prove the uniqueness of the value of v by
induction:

Theorem (Uniqueness of evaluation)

If e ⇓ v and e ⇓ v ′, then v = v ′.

Base case.

If e = n then since n ⇓ v and n ⇓ v ′ hold, the only way we
could derive these judgments is for v , v ′ to both equal n.
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Uniqueness

Inductive case.

If e = e1 + e2 then the derivations must be of the form

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

e1 ⇓ v ′
1 e2 ⇓ v ′

2

e1 + e2 ⇓ v ′
1 +N v ′

2

By induction, e1 ⇓ v1 and e1 ⇓ v ′
1 implies v1 = v ′

1, and similarly
for e2 so v2 = v ′

2. Therefore v1 +N v2 = v ′
1 +N v ′

2.

The proof for e1 × e2 is similar.
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Totality, uniqueness, and correctness

The Scala interpreter code defined earlier says how to
interpret a LArith expression as a function

The big-step rules, in contrast, specify the meaning of
expressions as a relation.

Nevertheless, totality and uniqueness guarantee that for
each e there is a unique v such that e ⇓ v

In fact, v = eval(e), that is:

Theorem (Interpreter Correctness)

For any LArith expression e, we have e ⇓ v if and only if
v = eval(e).

Proof: induction on e.

Values and evaluation Big-step semantics Totality and Uniqueness

Summary

In this lecture, we’ve covered:

A simple interpreter
Evaluation via rules
Totality and uniqueness (via structural induction)

all for the simple language LArith

Next time:

Booleans, equality, conditionals
Types



Booleans and Conditionals Types

Elements of Programming Languages
Lecture 3: Booleans, conditionals, and types

James Cheney

University of Edinburgh

September 30, 2016

Booleans and Conditionals Types

Boolean expressions

So far we’ve considered only a trivial arithmetic language
LArith

Let’s extend LArith with equality tests and Boolean
true/false values:

e ::= · · · | b ∈ B | e1 == e2

We write B for the set of Boolean values {true, false}
Basic idea: e1 == e2 should evaluate to true if e1 and e2
have equal values, false otherwise

Booleans and Conditionals Types

What use is this?

Examples:

2 + 2 == 4 should evaluate to true

3× 3 + 4× 4 == 5× 5 should evaluate to true

3× 3 == 4× 7 should evaluate to false

How about true == true? Or false == true?

So far, there’s not much we can do.

We can evaluate a numerical expression for its value, or a
Boolean equality expression to true or false

We can’t write an expression whose result depends on
evaluating a comparison.

We lack an “if then else” (conditional) operation.

We also can’t “and”, “or” or negate Boolean values.

Booleans and Conditionals Types

Conditionals

Let’s also add an “if then else” operation:

e ::= · · · | b ∈ B | e1 == e2 | if e then e1 else e2

We define LIf as the extension of LArith with booleans,
equality and conditionals.

Examples:

if true then 1 else 2 should evaluate to 1
if 1 + 1 == 2 then 3 else 4 should evaluate to 3
if true then false else true should evaluate to
false

Note that if e then e1 else e2 is the first expression
that makes nontrivial “choices”: whether to evaluate the
first or second case.
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Extending evaluation

We consider the Boolean values true and false to be
values:

v ::= n ∈ N | b ∈ B

and we add the following evaluation rules:

e ⇓ v for LIf

e1 ⇓ v e2 ⇓ v
e1 == e2 ⇓ true

e1 ⇓ v1 e2 ⇓ v2 v1 6= v2
e1 == e2 ⇓ false

e ⇓ true e1 ⇓ v1
if e then e1 else e2 ⇓ v1

e ⇓ false e2 ⇓ v2
if e then e1 else e2 ⇓ v2

Booleans and Conditionals Types

Extending the interpreter

To interpret LIf , we need new expression forms:

case class Bool(n: Boolean) extends Expr

case class Eq(e1: Expr, e2:Expr) extends Expr

case class IfThenElse(e: Expr, e1: Expr, e2: Expr)

extends Expr

and different types of values (not just Ints):

abstract class Value

case class NumV(n: Int) extends Value

case class BoolV(b: Boolean) extends Value

(Technically, we could encode booleans as integers, but in
general we will want to separate out the kinds of values.)
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Extending the interpreter

// helpers

def add(v1: Value, v2: Value): Value =

(v1,v2) match {

case (NumV(v1), NumV(v2)) => NumV (v1 + v2)

}

def mult(v1: Value, v2: Value): Value = ...

def eval(e: Expr): Value = e match {

// Arithmetic

case Num(n) => NumV(n)

case Plus(e1,e2) => add(eval(e1),eval(e2))

case Times(e1,e2) => mult(eval(e1),eval(e2))

... }
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Extending the interpreter

// helper

def eq(v1: Value, v2: Value): Value = (v1,v2) match {

case (NumV(n1), NumV(n2)) => BoolV(n1 == n2)

case (BoolV(b1), BoolV(b2)) => BoolV(b1 == b2)

}

def eval(e: Expr): Value = e match {

...

case Bool(b) => BoolV(b)

case Eq(e1,e2) => eq (eval(e1), eval(e2))

case IfThenElse(e,e1,e2) => eval(e) match {

case BoolV(true) => eval(e1)

case BoolV(false) => eval(e2)

}

}
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Aside: Other Boolean operations

We can add Boolean and, or and not operations as
follows:

e ::= · · · | e1 ∧ e2 | e1 ∨ e2 | ¬(e)

with evaluation rules:

e ⇓ v

e1 ⇓ v1 e2 ⇓ v2
e1 ∧ e2 ⇓ v1 ∧B v2

e1 ⇓ v1 e2 ⇓ v2
e1 ∨ e2 ⇓ v1 ∨B v2

where again, ∧B and ∨B are the mathematical “and” and
“or” operations

These are definable in LIf , so we will leave them out to
avoid clutter.
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Aside: Shortcut operations

Many languages (e.g. C, Java) offer shortcut versions of
“and” and “or”:

e ::= · · · | e1 && e2 | e1 || e2

e1 && e2 stops early if e1 is false (since e2’s value then
doesn’t matter).

e1 || e2 stops early if e1 is true (since e2’s value then
doesn’t matter).

We can model their semantics using rules like this:

e1 ⇓ false
e1 && e2 ⇓ false

e1 ⇓ true e2 ⇓ v2
e1 && e2 ⇓ v2

e1 ⇓ true
e1 || e2 ⇓ true

e1 ⇓ false e2 ⇓ v2
e1 || e2 ⇓ v2
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What else can we do?

We can also do strange things like this:

e1 = 1 + (2 == 3)

Or this:
e2 = if 1 then 2 else 3

What should these expressions evaluate to?

There is no v such that e1 ⇓ v or e2 ⇓ v !

the Totality property for LArith fails, for LIf !

If we try to run the interpreter: we just get an error

Booleans and Conditionals Types

One answer: Conversions

In some languages (notably C, Java), there are built-in
conversion rules

For example, “if an integer is needed and a boolean is
available, convert true to 1 and false to 0”
Likewise, “if a boolean is needed and an integer is
available, convert 0 to false and other values to true”
LISP family languages have a similar convention: if we
need a Boolean value, nil stands for “false” and any
other value is treated as “true”

Conversion rules are convenient but can make programs
less predictable

We will avoid them for now, but consider principled ways
of providing this convenience later on.
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Another answer: Types

Should programs like:

1 + (2 == 3) if 1 then 2 else 3

even be allowed?

Idea: use a type system to define a subset of
“well-formed” programs

Well-formed means (at least) that at run time:

arguments to arithmetic operations (and equality tests)
should be numeric values
arguments to conditional tests should be Boolean values
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Typing rules, informally: arithmetic

Consider an expression e

If e = n, then e has type “integer”
If e = e1 + e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.
If e = e1 × e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.

Booleans and Conditionals Types

Typing rules, informally: booleans, equality and

conditionals

Consider an expression e

If e = true or false, then e has type “boolean”
If e = e1 == e2, then e1 and e2 must have the same
type. If so, e has type “boolean”, else error.
If e = if e0 then e1 else e2, then e0 must have type
“boolean”, and e1 and e2 must have the same type. If
so, then e has the same type as e1 and e2, else error.

Note 1: Equality arguments have the same (unknown)
type.

Note 2: Conditional branches have the same (unknown)
type. This type determines the type of the whole
conditional expression.
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Concise notation for typing rules

We can define the possible types using a BNF grammar,
as follows:

Type 3 τ ::= int | bool
For now, we will consider only two possible types,
“integer” (int) and “boolean” (bool).

We can also use rules to describe the types of expressions:

Definition (Typing judgment ` e : τ)

We use the notation ` e : τ to say that e is a well-formed
term of type τ (or “e has type τ”).
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Typing rules, more formally: arithmetic

If e = n, then e has type “integer”

If e = e1 + e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.

If e = e1 × e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.

` e : τ for LArith

n ∈ N
` n : int

` e1 : int ` e2 : int
` e1 + e2 : int

` e1 : int ` e2 : int
` e1 × e2 : int

Booleans and Conditionals Types

Typing rules, more formally: equality and

conditionals

` e : τ for LIf

b ∈ B
` b : bool

` e1 : τ ` e2 : τ
` e1 == e2 : bool

` e : bool ` e1 : τ ` e2 : τ
` if e then e1 else e2 : τ

We indicate that the types of subexpressions of == must
be equal by using the same τ

Similarly, we indicate that the result of a conditional has
the same type as the two branches using the same τ for
all three
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Typing judgments: examples

` 1 : int ` 2 : int
` 1 + 2 : int ` 4 : int
` 1 + 2 == 4 : bool

...
` 1 + 2 == 4 : bool ` 42 : int ` 17 : int
` if 1 + 2 == 4 then 42 else 17 : int

...
` if 1 + 2 == 4 then 42 else 17 : int ` 100 : int
` (if 1 + 2 == 4 then 42 else 17) + 100 : int

Booleans and Conditionals Types

Typing judgments: non-examples

But we also want some things not to typecheck:

` 1 == true : τ

` if 42 then e1 else e2 : τ

These judgments do not hold for any e1, e2, τ .
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Fundamental property of typing

The point of the typing judgment is to ensure soundness:
if an expression is well-typed, then it evaluates “correctly”

That is, evaluation is well-behaved on well-typed
programs.

Theorem (Type soundness for LIf)

If ` e : τ then e ⇓ v and ` v : τ .

For a language like LIf , soundness is fairly easy to prove
by induction on expressions. We’ll present soundness for
more realistic languages in detail later.

Booleans and Conditionals Types

Static vs. dynamic typing

Some languages proudly advertise that they are “static”
or “dynamic”

Static typing:
not all expressions are well-formed; some sensible
programs are not allowed
types can be used to catch errors, improve performance

Dynamic typing:
all expressions are well-formed; any program can be run
type errors arise dynamically; higher overhead for
tagging and checking

These are rarely-realized extremes: most “statically”
typed languages handle some errors dynamically

In contrast, any “dynamically” typed language can be
thought of as a statically typed one with just one type.

Booleans and Conditionals Types

Summary

In this lecture we covered:

Boolean values, equality tests and conditionals
Extending the interpreter to handle them
Typing rules

Next time:

Variables and let-binding
Substitution, environments and type contexts
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Variables

A variable is a symbol that can ‘stand for’ a value.

Often written x , y , z , . . ..

Let’s extend LIf with variables:

e ::= n ∈ N | e1 + e2 | e1 × e2
| b ∈ B | e1 == e2 | if e then e1 else e2
| x ∈ Var

Here, x is shorthand for an arbitrary variable in Var , the
set of expression variables

Let’s call this language LVar
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Aside: Operators, operators everywhere

We have now considered several binary operators

+ × ∧ ∨ ≈

as well as a unary one (¬)

It is tiresome to write their syntax, evaluation rules, and
typing rules explicitly, every time we add to the language

We will sometimes represent such operations using
schematic syntax e1 ⊕ e2 and rules:

e1 ⇓ v1 e2 ⇓ v2
e1 ⊕ e2 ⇓ v1 ⊕A v2

` e1 : τ ′ ` e2 : τ ′ ⊕ : τ ′ × τ ′ → τ
` e1 ⊕ e2 : τ

where ⊕ : τ ′ × τ ′ → τ means that operator ⊕ takes
arguments τ ′, τ ′ and yields result of type τ

(e.g. + : int× int→ int, == : τ × τ → bool)
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Substitution

We said “A variable can ‘stand for’ a value.”

What does this mean precisely?

Suppose we have x + 1 and we want x to “stand for” 42.

We should be able to replace x everywhere in x + 1 with
42:

x + 1 42 + 1

Similarly, if x “stands for” 3 then

if x == y then x else y  if 3 == y then 3 else y
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Substitution

Let’s introduce a notation for this substitution operation:

Definition (Substitution)

Given e, x , v , the substitution of v for x in e is an expression
written e[v/x ].

For LVar, define substitution as follows:

v0[v/x ] = v0
x [v/x ] = v
y [v/x ] = y (x 6= y)

(e1 ⊕ e2)[v/x ] = e1[v/x ]⊕ e2[v/x ]
(if e then e1 else e2)[v/x ] = if e[v/x ] then e1[v/x ]

else e2[v/x ]
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Scope

As we all know from programming, we can reuse variable
names:

def foo(x: Int) = x + 1

def bar(x: Int) = x * x

The occurrences of x in foo have nothing to do with
those in bar

Moreover the following code is equivalent (since y is not
already in use in foo or bar):

def foo(x: Int) = x + 1

def bar(y: Int) = y * y
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Scope

Definition (Scope)

The scope of a variable name is the collection of program
locations in which occurrences of the variable refer to the
same thing.

I am being a little casual here: “refer to the same thing”
doesn’t necessarily mean that the two variable
occurrences evaluate to the same value at run time.

For example, the variables could refer to a shared
reference cell whose value changes over time.
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Scope, Binding and Bound Variables

Certain occurrences of variables are called binding

Again, consider

def foo(x: Int) = x + 1

def bar(y: Int) = y * y

The occurrences of x and y on the left-hand side of the
definitions are binding

Binding occurrences define scopes: the occurrences of x
and y on the right-hand side are bound

Any variables not in scope of a binder are called free

Key idea: Renaming all binding and bound occurrences in
a scope consistently (avoiding name clashes) should not
affect meaning
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Dynamic vs. static scope

The terms static and dynamic scope are sometimes used.

In static scope, the scope and binding occurrences of all
variables can be determined from the program text,
without actually running the program.

In dynamic scope, this is not necessarily the case: the
scope of a variable can depend on the context in which it
is evaluated at run time.

We will have more to say about this later when we cover
functions

but for now, the short version is: Static scope good,
dynamic scope bad.
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Simple scope: let-binding

For now, we consider a very basic form of scope:
let-binding.

e ::= · · · | x | let x = e1 in e2

We define LLet to be LIf extended with variables and let.

In an expression of the form let x = e1 in e2, we say
that x is bound in e2

Intuition: let-binding allows us to use a variable x as an
abbreviation for some other expression:

let x = 1 + 2 in 3× x  3× (1 + 2)
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Equivalence up to consistent renaming

We wish to consider expressions equivalent if they have
the same binding structure

We can rename bound names to get equivalent
expressions:

let x = y + z in x == w ≡ let u = y + z in u == w

But some renamings change the binding structure:

let x = y + z in x == w 6≡ let w = y + z in w == w

Intuition: Renaming to u is fine, because u is not already
“in use”.

But renaming to w changes the binding structure, since
w was already “in use”.
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Freshness

We say that a variable x is fresh for an expression e if
there are no free occurrences of x in e.

We can define this using rules as follows:

x # e

x # v
x 6= y
x # y

x # e1 x # e2
x # e1 ⊕ e2

x # e x # e1 x # e2
x # if e then e1 else e2

x # e1
x # let x = e1 in e2

x 6= y x # e1 x # e2
x # let y = e1 in e2

Examples:

x # true x # y x # let x = 1 in x
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Renaming

We will also use the following swapping operation to
rename variables:

x(y↔z) =





y if x = z
z if x = y
x otherwise

v(y↔z) = v
(e1 ⊕ e2)(y↔z) = e1(y↔z)⊕ e2(y↔z)

(if e then e1 else e2)(y↔z) = if e(y↔z) then e1(y↔z)
else e2(y↔z)

(let x = e1 in e2)(y↔z) = let x(y↔z) = e1(y↔z)
in e2(y↔z)

Example:

(let x = y in x + z)(x↔z) = let z = y in z + x
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Alpha-conversion

We can now define “consistent renaming”.

Suppose y # e2. Then we can rename a let-expression
as follows:

let x = e1 in e2  α let y = e1 in e2(x↔y)

This is called alpha-conversion.

Two expressions are alpha-equivalent if we can convert
one to the other using alpha-conversions.
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Examples

Examples:

let x = y + z in x == w
 α let u = y + z in (x == w)(x↔u)
= let u = y + z in u(x↔u) == w(x↔u)
= let u = y + z in u == w

since u # (x == w).

But

let x = y +z in x == w 6 α let w = y +z in w == w

because w already appears in x == w .
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Types and variables

Once we add variables to our language, how does that
affect typing?

Consider
let x = e1 in e2

When is this well-formed? What type does it have?

Consider a variable on its own: what type does it have?

Different occurrences of the same variable in
different scopes could have different types.

We need a way to keep track of the types of variables
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Types for variables and let, informally

Suppose we have a way of keeping track of the types of
variables (say, some kind of map or table)

When we see a variable x , look up its type in the map.

When we see a let x = e1 in e2, find out the type of e1.
Suppose that type is τ1. Add the information that x has
type τ1 to the map, and check e2 using the augmented
map.

Note: The local information about x ’s type should not
persist beyond typechecking its scope e2.
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Types for variables and let, informally

For example:
let x = 1 in x + 1

is well-formed: we know that x must be an int since it is
set equal to 1, and then x + 1 is well-formed because x is
an int and 1 is an int.

On the other hand,

let x = 1 in if x then 42 else 17

is not well-formed: we again know that x must be an int

while checking if x then 42 else 17, but then when we
check that the conditional’s test x is a bool, we find that
it is actually an int.
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Type Environments

We write Γ to denote a type environment, or a finite map
from variable names to types, often written as follows:

Γ ::= x1 : τ1, . . . , xn : τn

In Scala, we can use the built-in type
ListMap[Variable,Type] for this.

hey, maybe that’s why the Lab has all that stuff about
ListMaps!

Moreover, we write Γ(x) for the type of x according to Γ
and Γ, x : τ to indicate extending Γ with the mapping x
to τ .
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Types for variables and let, formally

We now generalize the ideal of well-formedness:

Definition (Well-formedness in a context)

We write Γ ` e : τ to indicate that e is well-formed at type τ
(or just “has type τ”) in context Γ.

The rules for variables and let-binding are as follows:

Γ ` e : τ for LLet

Γ(x) = τ

Γ ` x : τ
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
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Types for variables and let, formally

We also need to generalize the LIf rules to allow contexts:

Γ ` e : τ for LIf

Γ ` n : int
Γ ` e1 : τ1 Γ ` e2 : τ2 ⊕ : τ1 × τ2 → τ

Γ ` e1 ⊕ e2 : τ

Γ ` b : bool
Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ

This is straightforward: we just add Γ everywhere.

The previous rules are special cases where Γ is empty.
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Examples, revisited

We can now typecheck as follows:

` 1 : int
x : int ` x : int x : int ` 1 : int

x : int ` x + 1 : int
` let x = 1 in x + 1 : int

On the other hand:

` 1 : int
x : int ` x : bool · · ·

x : int ` if x then 42 else 17 :??
` let x = 1 in if x then 42 else 17 :??

is not derivable because the judgment x : int ` x : bool isn’t.
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Evaluation for let and variables

One approach: whenever we see let x = e1 in e2,
1 evaluate e1 to v1
2 replace x with v1 in e2 and evaluate that

e ⇓ v for LLet

e1 ⇓ v1 e2[v1/x ] ⇓ v2
let x = e1 in e2 ⇓ v2

Note: We always substitute values for variables, and do
not need a rule for “evaluating” a variable

This evaluation strategy is called eager, strict, or (for
historical reasons) call-by-value

This is a design choice. We will revisit this choice (and
consider alternatives) later.
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Substitution-based interpreter

type Variable = String

...

case class Var(x: Variable) extends Expr

case class Let(x: Variable, e1: Expr, e2: Expr)

extends Expr

...

def eval(e: Expr): Value = e match {

...

case Let(x,e1,e2) => {

val v = eval(e1);

val e2vx = subst(e2,v,x);

eval(e2vx)

}

Note: No case for Var(x).
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Alternative semantics: environments

Another common way to handle variables is to use an
environment
An environment σ is a partial function from variables to
values (e.g. a Scala ListMap[Variable,Value]).
We add σ as an argument to the evaluation judgment:

σ, e ⇓ v

σ, v ⇓ v
σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, e1 + e2 ⇓ v1 +N v2

σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, e1 × e2 ⇓ v1 ×N v2

· · ·
σ, e1 ⇓ v1 σ[x = v ], e2 ⇓ v2
σ, let x = e1 in e2 ⇓ v2 σ, x ⇓ σ(x)

Assignment 2 will ask you to implement such an
interpreter.

Variables and Substitution Scope and Binding Types and evaluation

Summary

Today we’ve covered:

Variables that can be replaced with values
Scope and binding, alpha-equivalence
Let-binding and how it affects typing and semantics

Next time:

Functions and function types
Recursion
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Named functions Anonymous functions Recursion

Overview

So far, we’ve covered

arithmetic
booleans, conditionals (if then else)
variables and simple binding (let)

LLet allows us to compute values of expressions

and use variables to store intermediate values

but not to define computations on unknown values.

That is, there is no feature analogous to Haskell’s
functions, Scala’s def, or methods in Java.

Today, we consider functions and recursion

Named functions Anonymous functions Recursion

Named functions

A simple way to add support for functions is as follows:

e ::= · · · | f (e) | let fun f (x : τ) = e1 in e2

Meaning: Define a function called f that takes an
argument x and whose result is the expression e1.

Make f available for use in e2.

(That is, the scope of x is e1, and the scope of f is e2.)

This is pretty limited:

for now, we consider one-argument functions only.
no recursion
functions are not first-class “values” (e.g. can’t pass a
function as an argument to another)

Named functions Anonymous functions Recursion

Examples

We can define a squaring function:

let fun square(x : int) = x × x in · · ·

or (assuming inequality tests) absolute value:

let fun abs(x : int) = if x < 0 then −x else x in · · ·
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Types for named functions

We introduce a type constructor τ1 → τ2, meaning “the
type of functions taking arguments in τ1 and returning τ2”

We can typecheck named functions as follows:

Γ, x :τ1 ` e1 : τ2 Γ, f :τ1 → τ2 ` e2 : τ

Γ ` let fun f (x : τ1) = e1 in e2 : τ

Γ(f ) = τ1 → τ2 Γ ` e : τ1
Γ ` f (e) : τ2

For convenience, we just use a single environment Γ for
both variables and function names.

Named functions Anonymous functions Recursion

Example

Typechecking of abs(−42)

Γ(x) = int

Γ ` x : int Γ ` 0 : int
Γ ` x < 0 : bool

Γ ` x : int
Γ ` −x : int

Γ(x) = int

Γ ` x : int
Γ ` if x < 0 then −x else x : int

...
Γ ` eabs : int

abs:int→ int ` −42 : int
abs:int→ int ` abs(−42) : int

` let fun abs(x : int) = eabs in abs(−42) : int

where eabs = if x < 0 then −x else x and Γ = x :int.

Named functions Anonymous functions Recursion

Semantics of named functions

We can define rules for evaluating named functions as
follows.

First, let δ be an environment mapping function names f
to their “definitions”, which we’ll write as 〈x ⇒ e〉.
When we encounter a function definition, add it to δ.

δ[f 7→ 〈x ⇒ e1〉], e2 ⇓ v

δ, let fun f (x : τ) = e1 in e2 ⇓ v

When we encounter an application, look up the definition
and evaluate the body with the argument value
substituted for the argument:

δ, e0 ⇓ v0 δ(f ) = 〈x ⇒ e〉 δ, e[v0/x ] ⇓ v

δ, f (e0) ⇓ v

Named functions Anonymous functions Recursion

Examples

Evaluation of abs(−42)

δ,−42 < 0 ⇓ true δ,−(−42) ⇓ 42

δ, if −42 < 0 then − (−42) else −42 ⇓ 42

δ,−42 ⇓ −42 δ(abs) = 〈x ⇒ eabs〉
...

δ, eabs [−42/x ] ⇓ 42

δ, abs(−42) ⇓ 42

let fun abs(x : int) = eabs in abs(−42) ⇓ 42

where eabs = if x < 0 then −x else x and
δ = [abs 7→ 〈x ⇒ eabs〉]
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Static vs. dynamic scope

Function bodies can contain free variables. Consider:

let x = 1 in

let fun f (y : int) = x + y in

let x = 10 in f (3)

Here, x is bound to 1 at the time f is defined, but
re-bound to 10 when by the time f is called.

There are two reasonable-seeming result values,
depending on which x is in scope:

Static scope uses the binding x = 1 present when f is
defined, so we get 1 + 3 = 4.
Dynamic scope uses the binding x = 10 present when f
is used, so we get 10 + 3 = 13.

Named functions Anonymous functions Recursion

Dynamic scope breaks type soundness

Even worse, what if we do this:

let x = 1 in

let fun f (y : int) = x + y in

let x = true in f (3)

When we typecheck f , x is an integer, but it is re-bound
to a boolean by the time f is called.

The program as a whole typechecks, but we get a
run-time error: dynamic scope makes the type system
unsound!

Early versions of LISP used dynamic scope, and it is
arguably useful in an untyped language.

Dynamic scope is now generally acknowledged as a
mistake — but one that naive language designers still
make.
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Anonymous, first-class functions

In many languages (including Java as of version 8), we
can also write an expression for a function without a
name:

λx : τ. e

Here, λ (Greek letter lambda) introduces an anonymous
function expression in which x is bound in e.

(The λ-notation dates to Church’s higher-order logic
(1940); there are several competing stories about why he
chose λ.)

In Scala one writes: (x: Type) => e

In Java 8: x -> e (no type needed)

In Haskell: \x -> e or \x::Type -> e

The lambda-calculus is a model of anonymous functions
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Types for the λ-calculus

We define LLam to be LLet extended with typed
λ-abstraction and application as follows:

e ::= · · · | e1 e2 | λx :τ. e

τ ::= · · · | τ1 → τ2

τ1 → τ2 is (again) the type of functions from τ1 to τ2.

We can extend the typing rules as follows:

Γ ` e : τ for LLam

Γ, x :τ1 ` e : τ2
Γ ` λx :τ1. e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2
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Evaluation for the λ-calculus

Values are extended to include λ-abstractions λx . e:

v ::= · · · | λx . e
(Note: We elide the type annotations when not needed.)
and the evaluation rules are extended as follows:

e ⇓ v for LLam

λx . e ⇓ λx . e
e1 ⇓ λx .e e2 ⇓ v2 e[v2/x ] ⇓ v

e1 e2 ⇓ v

Note: Combined with let, this subsumes named
functions! We can just define let fun as “syntactic
sugar”

let fun f (x :τ) = e1 in e2 ⇐⇒ let f = λx :τ. e1 in e2

Named functions Anonymous functions Recursion

Examples

In LLam, we can define a higher-order function that calls
its argument twice:

let fun twice(f : τ → τ) = λx :τ. f (f (x)) in · · ·

and we can define the composition of two functions:

let compose = λf :τ2 → τ3. λg :τ1 → τ2. λx :τ1. f (g(x)) in · · ·

Notice we are using repeated λ-abstractions to handle
multiple arguments

Named functions Anonymous functions Recursion

Recursive functions

However, LLam still cannot express general recursion, e.g.
the factorial function:

let fun fact(n:int) =
if n == 0 then 1 else n × fact(n − 1) in · · ·

is not allowed because fact is not in scope inside the
function body.

We can’t write it directly as a λ-expression λx :τ. e either
because we don’t have a “name” for the function we’re
trying to define inside e.

Named functions Anonymous functions Recursion

Named recursive functions

In many languages, named function definitions are
recursive by default. (C, Python, Java, Haskell, Scala)

Others explicitly distinguish between nonrecursive and
recursive (named) function definitions. (Scheme, OCaml,
F#)

let f(x) = e // nonrecursive:

// only x is in scope in e

let rec f(x) = e // recursive:

// both f and x in scope in e

Note: In the untyped λ-calculus, let rec is definable
using a special λ-term called the Y combinator
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Anonymous recursive functions

Inspired by LLam, we introduce a notation for anonymous
recursive functions:

e ::= · · · | rec f (x : τ1) : τ2. e

Idea: f is a local name for the function being defined, and
is in scope in e, along with the argument x .

We define LRec to be LLam extended with rec.

We can then define let rec as syntactic sugar:

let rec f (x :τ1) : τ2 = e1 in e2
⇐⇒ let f = rec f (x :τ1) : τ2. e1 in e2

Note: The outer f is in scope in e2, while the inner one is
in scope in e1. The two f bindings are unrelated.
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Anonymous recursive functions: typing

The types of LRec are the same. We just add one rule:

Γ ` e : τ for LRec

Γ, f : τ1 → τ2, x : τ1 ` e : τ2
Γ ` rec f (x :τ1) : τ2. e : τ1 → τ2

This says: to typecheck a recursive function,

bind f to the type τ1 → τ2 (so that we can call it as a
function in e),
bind x to the type τ1 (so that we can use it as an
argument in e),
typecheck e.

Since we use the same function type, the existing function
application rule is unchanged.
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Anonymous recursive functions: semantics

Like a λ-term, a recursive function is a value:

v ::= · · · | rec f (x). e

We can evaluate recursive functions as follows:

e ⇓ v for LRec

rec f (x). e ⇓ rec f (x). e

e1 ⇓ rec f (x). e e2 ⇓ v2 e[rec f (x). e/f , v2/x ] ⇓ v

e1 e2 ⇓ v

To apply a recursive function, we substitute the argument
for x and the whole rec expression for f .

Named functions Anonymous functions Recursion

Examples

We can now write, typecheck and run fact

(you will implement an evaluator for LRec in Assignment
2 that can do this)

In fact, LRec is Turing-complete (though it is still so
limited that it is not very useful as a general-purpose
language)

(Turing complete means: able to simulate any Turing
machine, that is, any computable function / any other
programming language. ITCS covers Turing completeness
and computability in depth.)
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Mutual recursion

What if we want to define mutually recursive functions?

A simple example:

def even(n: Int) = if n == 0 then true else odd(n-1)

def odd(n: Int) = if n == 0 then false else even(n-1)

Perhaps surprisingly, we can’t easily do this!

One solution: generalize let rec:

let rec f1(x1:τ1) : τ ′1 = e1 and · · · and fn(xn:τn) : τ ′n = en
in e

where f1, . . . , fn are all in scope in bodies e1, . . . , en.

This gets messy fast; we’ll revisit this issue later.

Named functions Anonymous functions Recursion

Summary

Today we have covered:

Named functions
Static vs. dynamic scope
Anonymous functions
Recursive functions

along with our first “composite” type, the function type
τ1 → τ2.

Next time

Data structures: Pairs (combination) and variants
(choice)
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Pairs and Records Variants and Case Analysis

The story so far

We’ve now covered the main ingredients of any
programming language:

Abstract syntax
Semantics/interpretation
Types
Variables and binding
Functions and recursion

but only in the context of a very weak language: there are
no “data structures” (records, lists, variants), pointers,
side-effects etc.

Let alone even more advanced features such as classes,
interfaces, or generics

Over the next few lectures we will show how to add them,
consolidating understanding of the foundations along the
way.

Pairs and Records Variants and Case Analysis

Pairs

The simplest way to combine data structures: pairing

(1, 2) (true, false) (1, (true, λx :int.x + 2))

If we have a pair, we can extract one of the components:

fst (1, 2) 1 snd (true, false) false

snd (1, (true, λx :int.x + 2)) (true, λx :int.x + 2)

Finally, we can often pattern match against a pair, to
extract both components at once:

let pair (x , y) = (1, 2) in (y , x) (2, 1)

Pairs and Records Variants and Case Analysis

Pairs in various languages

Haskell Scala Java Python
(1,2) (1,2) new Pair(1,2) (1,2)

fst e e. 1 e.getFirst() e[0]

snd e e. 2 e.getSecond() e[1]

let (x,y) = val (x,y) = N/A N/A

Functional languages typically have explicit syntax (and
types) for pairs

Java and C-like languages have “record”, “struct” or
“class” structures that accommodate multiple, named
fields.

A pair type can be defined but is not built-in and there
is no support for pattern-matching
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Syntax and Semantics of Pairs

Syntax of pair expressions and values:

e ::= · · · | (e1, e2) | fst e | snd e

| let pair (x , y) = e1 in e2

v ::= · · · | (v1, v2)

e ⇓ v for pairs

e1 ⇓ v1 e2 ⇓ v2
(e1, e2) ⇓ (v1, v2)

e ⇓ (v1, v2)

fst e ⇓ v1

e ⇓ (v1, v2)

snd e ⇓ v2

e1 ⇓ (v1, v2) e2[v1/x , v2/y ] ⇓ v

let pair (x , y) = e1 in e2 ⇓ v
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Types for Pairs

Types for pair expressions:

τ ::= · · · | τ1 × τ2

Γ ` e : τ for pairs

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` fst e : τ1

Γ ` e : τ1 × τ2
Γ ` snd e : τ2

Γ ` e1 : τ1 × τ2 Γ, x : τ1, y : τ2 ` e2 : τ

Γ ` let pair (x , y) = e1 in e2 : τ
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let vs. fst and snd

The fst and snd operations are definable in terms of
let pair:

fst e ⇐⇒ let pair (x , y) = e in x

snd e ⇐⇒ let pair (x , y) = e in y

Actually, the let pair construct is definable in terms of
let, fst, snd too:

let pair (x , y) = e in e2
⇐⇒ let p = e in e2[fst p/x , snd p/y ]

We typically just use the (simpler) fst and snd

constructs and treat let pair as syntactic sugar.
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More generally: tuples and records

Nothing stops us from adding triples, quadruples, . . . ,
n-tuples.

(1, 2, 3) (true, 2, 3, λx .(x , x))

As mentioned earlier, many languages prefer named
record syntax:

(a : 1, b : 2, c : 3) (b : true, n1 : 2, n2 : 3, f : λx .(x , x))

(cf. class fields in Java, structs in C, etc.)

These are undeniably useful, but are definable using pairs.

We’ll revisit named record-style constructs when we
consider classes and modules.
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Special case: the “unit” type

Nothing stops us from adding a type of 0-tuples: a data
structure with no data. This is often called the unit type,
or unit.

e ::= · · · | ()

v ::= · · · | ()

τ ::= · · · | unit

() ⇓ () Γ ` () : unit

this may seem a little pointless: why bother to define a
type with no (interesting) data and no operations?

This is analogous to void in C/Java; in Haskell and Scala
it is called ().

Pairs and Records Variants and Case Analysis

Motivation for variant types

Pairs allow us to combine two data structures (a τ1 and a
τ2).

What if we want a data structure that allows us to
choose between different options?

We’ve already seen one example: booleans.

A boolean can be one of two values.
Given a boolean, we can look at its value and choose
among two options, using if then else .

Can we generalize this idea?

Pairs and Records Variants and Case Analysis

Another example: null values

Sometimes we want to produce either a regular value or a
special “null” value.

Some languages, including SQL and Java, allow many
types to have null values by default.

This leads to the need for defensive programming to
avoid the dreaded NullPointerException in Java, or
strange query behavior in SQL
Sir Tony Hoare (inventor of Quicksort) introduced null
references in Algol in 1965 “simply because it was so
easy to implement”!
he now calls them “the billion dollar mistake”:
http://www.infoq.com/presentations/←↩
Null-References-The-Billion←↩
-Dollar-Mistake-Tony-Hoare

Pairs and Records Variants and Case Analysis

Another problem with Null
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What would be better?

Consider an option type:

e ::= · · · | none | some(e)

τ ::= · · · | option[τ ]

Γ ` none : option[τ ]
Γ ` e : τ

Γ ` some(e) : option[τ ]

Then we can use none to indicate absence of a value, and
some(e) to give the present value.

Morover, the type of an expression tells us whether null
values are possible.
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Error codes

The option type is useful but still a little limited: we
either get a τ value, or nothing

If none means failure, we might want to get some more
information about why the failure occurred.

We would like to be able to return an error code

In older languages, notably C, special values are often
used for errors
Example: read reads from a file, and either returns
number of bytes read, or -1 representing an error
The actual error code is passed via a global variable
It’s easy to forget to check this result, and the function’s
return value can’t be used to return data.
Other languages use exceptions, which we’ll cover much
later

Pairs and Records Variants and Case Analysis

The OK-or-error type

Suppose we want to return either a normal value τok or
an error value τerr .

Let’s write okOrErr[τok , τerr ] for this type.

e ::= · · · | ok(e) | err(e)

τ ::= · · · | okOrErr[τ1, τ2]

Basic idea:

if e has type τok , then ok(e) has type okOrErr[τok , τerr ]
if e has type τerr , then err(e) has type
okOrErr[τok , τerr ]
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How do we use okOrErr[τok , τerr ]?

When we talked about option[τ ], we didn’t really say
how to use the results.

If we have a okOrErr[τok , τerr ] value v , then we want to
be able to branch on its value:

If v is ok(vok), then we probably want to get at vok and
use it to proceed with the computation
If v is err(verr ), then we probably want to get at verr to
report the error and stop the computation.

In other words, we want to perform case analysis on the
value, and extract the wrapped value for further
processing
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Case analysis

We consider a case analysis construct as follows:

case e of {ok(x)⇒ eok ; err(y)⇒ eerr}

This is a generalized conditional: “If e evaluates to
ok(vok), then evaluate eok with vok replacing x , else it
evaluates to err(verr ) so evaluate eerr with verr replacing
y .”

Here, x is bound in eok and y is bound in eerr

This construct should be familiar by now from Scala:

e match { case Ok(x) => e1

case Err(x) => e2

} // note slightly different syntax
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Variant types, more generally

Notice that the ok and err cases are completely
symmetric

Generalizing this type might also be useful for other
situations than error handling...

Therefore, let’s rename and generalize the notation:

e ::= · · · | left(e) | right(e)

| case e of {left(x)⇒ e1 ; right(y)⇒ e2}
v ::= · · · | left(v) | right(v)

τ ::= · · · | τ1 + τ2

We will call type τ1 + τ2 a variant type (sometimes also
called sum or disjoint union)
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Types for variants

We extend the typing rules as follows:

Γ ` τ for variant types

Γ ` e : τ1
Γ ` left(e) : τ1 + τ2

Γ ` e : τ2
Γ ` right(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 : τ Γ, y : τ2 ` e2 : τ

Γ ` case e of {left(x)⇒ e1 ; right(y)⇒ e2} : τ

Idea: left and right “wrap” τ1 or τ2 as τ1 + τ2

Idea: Case is like conditional, only we can use the
wrapped value extracted from left(v) or right(v).
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Semantics of variants

We extend the evaluation rules as follows:

e ⇓ v for variant types

e ⇓ v

left(e) ⇓ left(v)

e ⇓ v

right(e) ⇓ right(v)

e ⇓ left(v1) e1[v1/x ] ⇓ v

case e of {left(x)⇒ e1 ; right(y)⇒ e2} ⇓ v

e ⇓ right(v2) e2[v2/y ] ⇓ v

case e of {left(x)⇒ e1 ; right(y)⇒ e2} ⇓ v

Creating a τ1 + τ2 value is straightforward.

Case analysis branches on the τ1 + τ2 value
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Defining Booleans and option types

The Boolean type bool can be defined as unit + unit

true ⇐⇒ left() false ⇐⇒ right()

Conditional is then defined as case analysis, ignoring the
variables

if e then e1 else e2
⇐⇒ case e of {left(x)⇒ e1 ; right(y)⇒ e2}

Likewise, the option type is definable as τ + unit:

some(e) ⇐⇒ left(e) none ⇐⇒ right()
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Datatypes: named variants and case classes

Programming directly with binary variants is awkward

As for pairs, the τ1 + τ2 type can be generalized to n-ary
choices or named variants

As we saw in Lecture 1 with abstract syntax trees,
variants can be represented in different ways

Haskell supports “datatypes” which give constructor
names to the cases
In Java, can use classes and inheritance to simulate this,
verbosely (Python similar)
Scala does not directly support named variant types, but
provides “case classes” and pattern matching
We’ll revisit case classes and variants later in discussion
of object-oriented programming.
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The empty type

We can also consider the 0-ary variant type

τ ::= · · · | empty

with no associated expressions or values

Scala provides Nothing as a built-in type; most languages
do not

[Perhaps confusingly, this is not the same thing at all as
the void or unit type!]

We will talk about Nothing again when we cover
subtyping

(Insert Seinfeld joke here, if anyone is old enough to
remember that.)

Pairs and Records Variants and Case Analysis

Summary

Today we’ve covered two primitive types for structured
data:

Pairs, which combine two or more data structures
Variants, which represent alternative choices among data
structures
Special cases (unit, empty) and generalizations (records,
datatypes)

This is a pattern we’ll see over and over:

Define a type and expressions for creating and using its
elements
Define typing rules and evaluation rules

Next time:

Named records and variants
Subtyping
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Overview

Last time:

Simple data structures: pairing (product types), choice
(sum types)

Today:

Records (generalizing products), variants (generalizing
sums) and pattern matching
Subtyping
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Records

Records generalize pairs to n-tuples with named fields.

e ::= · · · | hl1 = e1, . . . , ln = eni | e.l

v ::= · · · | hl1 = v1, . . . , ln = vni
⌧ ::= · · · | hl1 : ⌧1, . . . , ln : ⌧ni

Examples:

hfst=1, snd="forty-two"i.snd 7! "forty-two"

hx=3.0, y=4.0, length=5.0i

Record fields can be (first-class) functions too:

hx=3.0, y=4.0, length=�(x , y). sqrt(x ⇤ x + y ⇤ y)i
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Named variants

As mentioned earlier, named variants generalize binary
variants just as records generalize pairs

e ::= · · · | Ci(e) | case e of {C1(x) ) e1; . . .}
v ::= · · · | Ci(v)

⌧ ::= · · · | [C1 : ⌧1, . . . , Cn : ⌧n]

Basic idea: allow a choice of n cases, each with a name

To construct a named variant, use the constructor name
on a value of the appropriate type, e.g. Ci(ei) where
ei : ⌧i

The case construct generalizes to named variants also
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Named variants in Scala: case classes

We have already seen (and used) Scala’s case class
mechanism

abstract class IntList

case class Nil() extends IntList

case class Cons(head: Int, tail: IntList)

extends IntList

Note: IntList, Nil, Cons are newly defined types,
di↵erent from any others.
Case classes support pattern matching

def foo(x: IntList) = x match {

case Nil() => ...

case Cons(head,tail) => ...

}
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Aside: Records and Variants in Haskell

In Haskell, data defines a recursive, named variant type

data IntList = Nil Int | Cons Int IntList

and cases can define named fields:

data Point = Point {x :: Double, y :: Double}

In both cases the newly defined type is di↵erent from any
other type seen so far, and the named constructor(s) can
be used in pattern matching

This approach dates to the ML programming language
(Milner et al.) and earlier designs such as HOPE (Burstall
et al.).

(Both developed in Edinburgh)

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Pattern matching

Datatypes and case classes support pattern matching

We have seen a simple form of pattern matching for sum
types.
This generalizes to named variants
But still is very limited: we only consider one “level” at
a time

Patterns typically also include constants and pairs/records

x match { case (1, (true, "abcd")) => ...}

Patterns in Scala, Haskell, ML can also be nested: that
is, they can match more than one constructor

x match { case Cons(1,Cons(y,Nil())) => ...}
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More pattern matching

Variables cannot be repeated, instead, explicit equality
tests need to be used.

The special pattern _ matches anything

Patterns can overlap, and usually they are tried in order

result match {

case OK => println("All is well")

case _ => println("Release the hounds!")

}

// not the same as

result match {

case _ => println("Release the hounds!")

case OK => println("All is well")

}
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Expanding nested pattern matching

Nested pattern matching can be expanded out:

l match {

case Cons(x,Cons(y,Nil())) => ...

}

expands to

l match {

case Cons(x,t1) => t1 match {

case Cons(y,t2) => t2 match {

case Nil() => ...

} } }
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Type abbreviations

Obviously, it quickly becomes painful to write
”hx : int, y : stri” over and over.

Type abbreviations introduce a name for a type.

type T = ⌧

An abbreviation name T treated the same as its
expansion ⌧

(much like let-bound variables)

Examples:

type Point = hx :dbl, y :dbli
type Point3d = hx :dbl, y :dbl, z :dbli
type Color = hr :int, g :int, b:inti
type ColoredPoint = hx :dbl, y :dbl, c :Colori
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Type definitions

Instead, can also consider defining new (named) types

deftype T = ⌧

The term generative is sometimes used to refer to
definitions that create a new entity rather than
introducing an abbreviation

Type abbreviations are usually not allowed to be
recursive; type definitions can be.

deftype IntList = [Nil : unit, Cons : int⇥ IntList]
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Type definitions vs. abbreviations in practice

In Haskell, type abbreviations are introduced by type,
while new types can be defined by data or newtype
declarations.

In Java, there is no explicit notation for type
abbreviations; the only way to define a new type is to
define a class or interface

In Scala, type abbreviations are introduced by type, while
the class, object and trait constructs define new
types
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Subtyping

Suppose we have a function:

dist = �p:Point. sqrt((p.x)2 + (p.y)2)

for computing the distance to the origin.

Only the x and y fields are needed for this, so we’d like to
be able to use this on ColoredPoints also.

But, this doesn’t typecheck:

dist(hx=8.0, y=12.0, c=purplei) = 13.0

We can introduce a subtyping relationship between Point
and ColoredPoint to allow for this.
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Subtyping

Liskov proposed a guideline for subtyping:

Liskov Substitution Principle

If S is a subtype of T , then objects of type T may be replaced
with objects of type S without altering any of the desirable
properties of the program.

If we use ⌧ <: ⌧ 0 to mean “⌧ is a subtype of ⌧ 0”, and
consider well-typedness to be desirable, then we can
translate this to the following subsumption rule:

� ` e : ⌧1 ⌧1 <: ⌧2

� ` e : ⌧2

This says: if e has type ⌧1 and ⌧1 <: ⌧2, then we can
proceed by pretending it has type ⌧2.
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Record subtyping: width and depth

There are several di↵erent ways to define subtyping for
records.

Width subtyping: subtype has same fields as supertype
(with identical types), and may have additional fields at
the end:

hl1 : ⌧1, . . . , ln : ⌧n, . . . , ln+k : ⌧n+ki <: hl1 : ⌧1, . . . , ln : ⌧ni

Depth subtyping: subtype’s fields are pointwise
subtypes of supertype

⌧1 <: ⌧ 01 · · · ⌧n <: ⌧ 0n
hl1 : ⌧1, . . . , ln : ⌧ni <: hl1 : ⌧ 01, . . . , ln : ⌧ 0ni

These rules can be combined. Optionally, field reordering
can also be allowed (but is harder to implement).
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Examples

(We’ll abbreviate P = Point, P3 = Point3d ,
CP = ColoredPoint to save space...)

So we have:

P3d = hx :dbl, y :dbl, z :dbli <: hx :dbl, y :dbli = P

CP = hx :dbl, y :dbl, c :Colori <: hx :dbl, y :dbli = P

but no other subtyping relationships hold

So, we can call dist on Point3d or ColoredPoint:

x : P3d ` x : P3d P3d <: P
x : P3d ` x : P

...
x : P3d ` dist : P ! dbl

x : P3d ` dist(x) : dbl
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Subtyping for pairs and variants

For pairs, subtyping is componentwise

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 ⇥ ⌧2 <: ⌧ 01 ⇥ ⌧ 02

Similarly for binary variants

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 + ⌧2 <: ⌧ 01 + ⌧ 02

For named variants, can have additional subtyping rules
(but this is rare)
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Subtyping for functions

When is A1 ! B1 <: A2 ! B2?

Maybe componentwise, like pairs?

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 ! ⌧2 <: ⌧ 01 ! ⌧ 02

But then we can do this (where �(p) = P):

� ` �x .x : CP ! CP
CP <: P CP <: CP
CP ! CP <: P ! CP

� ` �x .x : P ! CP � ` p : P

� ` (�x .x)p : CP

So, once ColoredPoint is a subtype of Point, we can
change any Point to a ColoredPoint also. That doesn’t
seem right.
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Covariant vs. contravariant

For the result type of a function (and for pairs and other
data structures), the direction of subtyping is preserved:

⌧2 <: ⌧ 02
⌧1 ! ⌧2 <: ⌧1 ! ⌧ 02

Subtyping of function results, pairs, etc., where order is
preserved, is covariant.

For the argument type of a function, the direction of
subtyping is flipped:

⌧ 01 <: ⌧1

⌧1 ! ⌧2 <: ⌧ 01 ! ⌧2

Subtyping of function arguments, where order is reversed,
is called contravariant.
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The “top” and “bottom” types

any: a type that is a supertype of all types.

Such a type describes the common interface of all its
subtypes (e.g. hashing, equality in Java)
In Scala, this is called Any

empty: a type that is a subtype of all types.

Usually, such a type is considered to be empty: there
cannot actually be any values of this type.
We’ve actually encountered this before, as the
degenerate case of a choice type where there are zero
chioces
In Scala, this type is called Nothing. So for any Scala
type ⌧ we have Nothing <: ⌧ <: Any .
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Summary: Subtyping rules

⌧1 <: ⌧2

empty <: ⌧ ⌧ <: any ⌧ <: ⌧
⌧1 <: ⌧2 ⌧2 <: ⌧3

⌧1 <: ⌧3

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 ⇥ ⌧2 <: ⌧ 01 ⇥ ⌧ 02

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 + ⌧2 <: ⌧ 01 + ⌧ 02

⌧ 01 <: ⌧1 ⌧2 <: ⌧ 02
⌧1 ! ⌧2 <: ⌧ 01 ! ⌧ 02

Notice that we combine the covariant and contravariant rules
for functions into a single rule.
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Structural vs. Nominal subtyping

The approach to subtyping considered so far is called
structural.

The names we use for type abbreviations don’t matter,
only their structure. For example, Point3d <: Point
because Point3d has all of the fields of Point (and more).

Then dist(p) also runs on p : Point3d (and gives a
nonsense answer!)

So far, a defined type has no subtypes (other than itself).

By default, definitions ColoredPoint, Point and Point3d
are unrelated.
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Structural vs. Nominal subtyping

If we defined new types Point 0 and Point3d 0, rather than
treating them as abbreviations, then we have more
control over subtyping

Then we can declare ColoredPoint 0 to be a subtype of
Point 0

deftype Point 0 = hx :dbl, y :dbli
deftype ColoredPoint 0 <: Point 0 = hx :dbl, y :dbl, c :Colori

However, we could choose not to assert Point3d 0 to be a
subtype of Point 0, preventing (mis)use of subtyping to
view Point3d 0s as Point 0s.
This nominal subtyping is used in Java and Scala

A defined type can only be a subtype of another if it is
declared as such
More on this later!
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Summary

Today we covered:

Records, variants, and pattern matching
Type abbreviations and definitions
Subtyping

Next time:

Polymorphism and type inference
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Parametric Polymorphism Type inference

Overview

This week and next week, we will cover different forms of
abstraction

type definitions, records, datatypes, subtyping
polymorphism, type inference
modules, interfaces
objects, classes

Today:

polymorphism and type inference

Parametric Polymorphism Type inference

Consider the humble identity function

A function that returns its input:

def idInt(x: Int) = x

def idString(x: String) = x

def idPair(x: (Int,String)) = x

Does the same thing no matter what the type is.

But we cannot just write this:

def id(x) = x

(In Scala, every variable needs to have a type.)
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Another example

Consider a pair “swap” operation:

def swapInt(p: (Int,Int)) = (p._2,p._1)

def swapString(p: (String,String)) = (p._2,p._1)

def swapIntString(p: (Int,String)) = (p._2,p._1)

Again, the code is the same in both cases; only the types
differ.

But we can’t write

def swap(p) = (p._2,p._1)

What type should p have?
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Another example

Consider a higher-order function that calls its argument
twice:

def twiceInt(f: Int => Int) = {x: Int => f(f(x))}

def twiceStr(f: String => String) =

{x: String => f(f(x))}

Again, the code is the same in both cases; only the types
differ.

But we can’t write

def twice(f) = {x => f(f(x))}

What types should f and x have?
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Type parameters

In Scala, function definitions can have type parameters

def id[A](x: A): A = x

This says: given a type A, the function id[A] takes an A and
returns an A.

def swap[A,B](p: (A,B)): (B,A) = (p._2,p._1)

This says: given types A,B, the function swap[A,B] takes a
pair (A,B) and returns a pair (B,A).

def twice[A](f: A => A): A => A = {x:A => f(f(x))}

This says: given a type A, the function twice[A] takes a
function f: A => A and returns a function of type A => A
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Parametric Polymorphism

Scala’s type parameters are an example of a phenomenon
called polymorphism (= “many shapes”)

More specifically, parametric polymorphism because the
function is parameterized by the type.

Its behavior cannot “depend on” what type replaces
parameter A.
The type parameter A is abstract

We also sometimes refer to A, B, C etc. as type variables
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Polymorphism: More examples

Polymorphism is even more useful in combination with
higher-order functions.

Recall compose from the lab:

def compose[A,B,C](f: A => B, g: B => C) =

{x:A => g(f(x))}

Likewise, the map and filter functions:

def map[A,B](f: A => B, x: List[A]): List[B] = ...

def filter[A](f: A => Bool, x: List[A]): List[A] = ...

(though in Scala these are usually defined as methods of
List[A] so the A type parameter and x variable are
implicit)
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Formalization

We add type variables A,B ,C , . . ., type abstractions,
type applications, and polymorphic types:

e ::= · · · | ΛA. e | e[τ ]

τ ::= · · · | A | ∀A. τ
We also use (capture-avoiding) substitution of types for
type variables in expressions and types.

The type ∀A. τ is the type of expressions that can have
type τ [τ ′/A] for any choice of A. (A is bound in τ .)

The expression ΛA. e introduces a type variable for use in
e. (Thus, A is bound in any type annotations in e.)

The expression e[τ ] instantiates a type abstraction

Define LPoly to be the extension of LData with these
features
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Formalization: Type and type variables

Complication: Types now have variables. What is their
scope? When is a type variable in scope in a type?

The polymorphic type ∀A.τ binds A in τ .

We write A # τ to say that type variable A is fresh for τ :

A 6= B
A # B

A # τ1 A # τ2
A # τ1 × τ2

A # τ1 A # τ2
A # τ1 → τ2

A # τ1 A # τ2
A # τ1 + τ2 A # ∀A.τ

A 6= B A # τ

A # ∀B .τ

A # x1:τ1, . . . , xn:τn ⇐⇒ A # τ1 · · ·A # τn

Alpha-equivalence and type substitution are defined
similarly to expressions.
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Formalization: Typechecking polymorphic

expressions

Γ ` e : τ

Γ ` e : τ A # Γ
Γ ` ΛA. e : ∀A. τ

Γ ` e : ∀A. τ
Γ ` e[τ0] : τ [τ0/A]

Idea: ΛA. e must typecheck with parameter A not already
used elsewhere in type context

e[τ0] applies a polymorphic expression to a type. Result
type obtained by substituting for A.

The other rules are unchanged
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Formalization: Semantics of polymorphic

expressions

To model evaluation, we add type abstraction as a
possible value form:

v ::= · · · | ΛA.e

with rules similar to those for λ and application:

e ⇓ v for LPoly

e ⇓ ΛA. e0 e0[τ/A] ⇓ v

e[τ ] ⇓ v ΛA. e ⇓ ΛA. e

In LPoly, type information is irrelevant at run time.

(Other languages, including Scala, do retain some run
time type information.)
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Convenient notation

We can augment the syntactic sugar for function
definitions to allow type parameters:

let fun f [A](x : τ) = e in ...

This is equivalent to:

let f = ΛA. λx : τ. e in ...

In either case, a function call can be written as

f [τ ](x)
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Examples in LPoly

Identity function

id = ΛA.λx :A. x

Swap

swap = ΛA.ΛB .λx :A× B . (snd x , fst x)

Twice

twice = ΛA. λf :A→ A.λx :A. f (f (x))

For example:

swap[int][str](1, ”a”) ⇓ (”a”, 1)

twice[int](λx : 2× x)(2) ⇓ 8
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Examples, typechecked

x :A ` x :A
` λx :A. x : A→ A

` ΛA.λx :A.x : ∀A.A→ A

` swap : ∀A.∀B .A× B → B × A

` swap[int] : ∀B .int× B → B × int

` swap[int][str] : int× str→ str× int
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Lists and parameterized types

In Scala (and other languages such as Haskell and ML),
type abbreviations and definitions can be parameterized.

List[_] is an example: given a type T, it constructs
another type List[T]

deftype List[A] = [Nil : unit;Cons : A× List[A]]

Such types are sometimes called type constructors

(See tutorial questions on lists)

We will revisit parameterized types when we cover
modules
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Other forms of polymorphism

Polymorphism refers to several related techniques for
“code reuse” or “overloading”

Subtype polymorphism: reuse based on inclusion
relations between types.
Parametric polymorphism: abstraction over type
parameters
Ad hoc polymorphism: Reuse of same name for multiple
(potentially type-dependent) implementations (e.g.
overloading + for addition on different numeric types,
string concatenation etc.)

These have some overlap

We will discuss overloading, subtyping and polymorphism
(and their interaction) in future lectures.

Parametric Polymorphism Type inference

Type inference

As seen in even small examples, specifying the type
parameters of polymorphic functions quickly becomes
tiresome

swap[int][str] map[int][str] · · ·

Idea: Can we have the benefits of (polymorphic) typing,
without the costs? (or at least: with fewer annotations)

Type inference: Given a program without full type
information (or with some missing), infer type
annotations so that the program can be typechecked.

Parametric Polymorphism Type inference

Hindley-Milner type inference

A very influential approach was developed independently
by J. Roger Hindley (in logic) and Robin Milner (in CS).

Idea: Typecheck an expression symbolically, collecting
“constraints” on the unknown type variables

If the constraints have a common solution then this
solution is a most general way to type the expression

Constraints can be solved using unification, an equation
solving technique from automated reasoning/logic
programming

If not, then the expression has a type error
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Hindley-Milner example [Non-examinable]

As an example, consider swap defined as follows:

` λx : A.(snd x , fst x) : B

A,B are the as yet unknown types of x and swap.

A lambda abstraction creates a function: hence
B = A→ A1 for some A1 such that
x :A ` (snd x , fst x) : A1

A pair constructs a pair type: hence A1 = A2 × A3 where
x :A ` snd x : A2 and x :A ` fst x : A3

This can only be the case if x : A3×A2, i.e. A = A3×A2.

Solving the constraints: A = A3 × A2, A1 = A2 × A3 and
so B = A2 × A3 → A3 × A2
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Let-bound polymorphism [Non-examinable]

An important additional idea was introduced in the ML
programming language, to avoid the need to explicitly
introduce type variables and apply polymorphic functions
to type arguments

When a function is defined using let fun (or let rec),
first infer a type:

swap : A2 × A3 → A3 × A2

Then abstract over all of its free type parameters.

swap : ∀A.∀B .A× B → B × A

Finally, when a polymorphic function is applied, infer the
missing types.

swap(1, ”a”) swap[int][str](1, ”a”)

Parametric Polymorphism Type inference

ML-style inference: strengths and weaknesses

Strengths

Elegant and effective
Requires no type annotations at all

Weaknesses

Can be difficult to explain errors
In theory, can have exponential time complexity (in
practice, it runs efficiently on real programs)
Very sensitive to extension: subtyping and other
extensions to the type system tend to require giving up
some nice properties

(We are intentionally leaving out a lot of technical detail
— HM type inference is covered in more detail in ITCS.)

Parametric Polymorphism Type inference

Type inference in Scala

Scala does not employ full HM type inference, but uses
many of the same ideas.

Type information in Scala flows from function arguments
to their results

def f[A](x: List[A]): List[(A,A)] = ...

f(List(1,2,3)) // A must be Int, don’t need f[Int]

and sequentially through statement blocks

var l = List(1,2,3); // l: List[Int] inferred

var y = f(l); // y : List[(Int,Int)] inferred
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Type inference in Scala

Type information does not flow across arguments in the
same argument list

def map[A](f: A => B, l: List[A]): List[B] = ...

scala> map({x: Int => x + 1}, List(1,2,3))

res0: List[Int] = List(2, 3, 4)

scala> map({x => x + 1}, List(1,2,3))

<console>:25: error: missing parameter type

But it can flow from earlier argument lists to later ones:

def map2[A](l: List[A])(f: A => B): List[B] = ...

scala> map2(List(1,2,3)) {x => x + 1}

res1: List[Int] = List(2, 3, 4)
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Type inference in Scala: strengths and limitations

Compared to Java, many fewer annotations needed

Compared to ML, Haskell, etc. many more annotations
needed

The reason has to do with Scala’s integration of
polymorphism and subtyping

needed for integration with Java-style object/class
system
Combining subtyping and polymorphism is tricky (type
inference can easily become undecidable)
Scala chooses to avoid global constraint-solving and
instead propagate type information locally
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Summary

Today we covered:

The idea of thinking of the same code as having many
different types
Parametric polymorphism: makes the type parameter
explicit and abstract
Brief coverage of type inference.

Next time:

Programs, modules, and interfaces

Parametric Polymorphism Type inference
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Programs Namespaces and Packages Modules and Interfaces

Overview

So far we have covered programming “in the small”

simple functional programming
abstractions: parametric polymorphism and subtyping

Next few lectures: programming “in the large”

Today

“Programs” as collections of definitions
Namespace management — packages
Abstract data types — modules and interfaces

We will mostly work “by example” using Scala —
formalizing modules, interfaces involves a lot of
bureaucracy.
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Programs

What is a program?

In LPoly, a program is an expression; any functions
defined in LPoly are local to the expression

let fun f (x : τ) = e1 in
let fun g(y : τ ′) = e2 in
...
e

Scope management is easier with these simplistic forms,
but isn’t very modular

In particular, we can’t easily split a program up into parts
that do unrelated work.
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Declarations and Programs

Most languages support declarations

Decl 3 d ::= let x = e; | let fun f (y : τ) = e;

| let rec f (y : τ) : τ ′ = e;

| type T = τ ; | deftype T = τ ;

A program is a sequence of declarations. The names x , f ,
T are in scope in the subsequent declarations.

Variation: In some languages (Haskell, Scala), the order
of declarations within a program is unimportant, and
names can be referenced before they are used.
Variation: In some languages, only certain “top-level”
declarations are allowed (e.g. classes/interfaces in Java)
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Entry points

The entry point is the place where execution starts when
the program is run

public static void main(String[] args) {...}

Can be specified in different ways:

Executable: specify a particular function that is called
first (e.g. main in C/C++, Java, Scala)
Scripting: entry point is start of program, expressions or
statements run in order
Web applications: entry points are functions such as
doGet, doPost in Java’s Servlet interface
Reactive: provide callbacks to handle one or more events
(e.g. JavaScript handlers for mouse actions)
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Programming in the large

What is the largest program you’ve written (or
maintained)?

1000 lines — 1 file?
10,000 lines? 10 files?
100,000 lines? 100 files?

Sooner or later, someone is going to want to use the
same name for different things.

If there are n programmers, then there are O(n2) possible
sources of name conflicts.

Namespaces provide a way to compartmentalize names to
avoid ambiguity.
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Example: Packages in Java

// com/widget/round/Widget.java

package com.widget.round

class Widget {...

}

// com/widget/square/Widget.java

package com.widget.square

class Widget { ...

}

We can reuse Widget and disambiguate:
com.widget.square.Widget vs.
com.widget.round.Widget

(Package names track the directory hierarchy in Java.)
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Importing

Given a namespace, we can import it

import com.widget.round.Widget

This brings a single name defined in a namespace into
the current scope

import com.widget.round.*

This brings all names defined in a namespace into the
current scope

In Java, importing can only happen at the top level of a
file, and imported names are always classes or interfaces.

(Scala is more flexible, as we’ll see)
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Code reuse and abstract data types

Another important concern for programming in the large
is code reuse.

We’d like to implement (or reuse) certain key data
structures once and for all, in a modular way

Examples: Lists, stacks, queues, sets, maps, etc.

An abstract data type (ADT) is a type together with
some operations on it

Abstract means the type definition (and operation
implementations) are not visible to the rest of the
program
Only the types of the operations are visible (the
interface)
An ADT also has a specification describing its behavior

Programs Namespaces and Packages Modules and Interfaces

Running example: priority queues in Scala

Using Scala objects, here is an initial priority queue ADT:

object PQueue {

type T = ...

val empty: T

def insert(n: Int,pq: T): T

def remove(pq:T): (Int,T)

}

(Similar to Java class with only static members)

Specification:

A priority queue represents a set of integers.
empty corresponds to the empty set
insert adds to the set
remove removes the least element of the set
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Implementing priority queues

One implementation: sorted lists (others possible)

object ListPQueue {

type T = List[Int]

val empty: T = Nil

def insert(n: Int,pq: T): T = pq match {

case Nil => List(n)

case x::xs =>

if (n < x) {n::pq} else {x::insert(n,xs)}

}

def remove(pq:T) = pq match {

case x::xs => (x,xs) // otherwise error

}

}
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Importing

Like packages, objects provide a form of namespace

object ListPQueue {

...

}

val pq = ListPQueue.insert(1,ListPQueue.empty)

import ListPQueue._

val pq2 = remove(pq)

Importing can be done inside other scopes (unlike Java)

def singleton(x: Int) {

import ListPQueue._

insert(x,empty)

}



Programs Namespaces and Packages Modules and Interfaces

ListPQueue isn’t abstract

If we only use the ListPQueue operations, the
specification is satisfied

However, the ListPQueue.T type allows non-sorted lists

So we can violate the specification by passing remove a
non-sorted list!

remove(List(2,1))

// returns 2, should return 1

This violates the (implicit) invariant that ListPQueue.T is
a sorted list.

So, users of this module need to be more careful to use it
correctly.
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One solution (?)

As in Java, we can make some components private

object ListPQueue {

private type T = List[Int]

private val foo: T = List(1)

}

This stops us from accessing foo

scala> ListPQueue.foo

<console>:20: error: (foo cannot be accessed)

However, T is still visible as List[Int]!

scala> ListPQueue.remove(List(2,1))

res10: (Int, List[Int]) = (2,List(1))

Programs Namespaces and Packages Modules and Interfaces

Interfaces

Another way to hide information about the
implementation of a module is to specify an interface

(This may be familiar from Java already. Haskell type
classes also can act as interfaces.)

We’d like to use an interface PQueue that says there is
some type T with operations:

empty: T

insert: (Int,T) => T

remove: T => (Int,T)

but prevent clients from knowing (or relying on) the
definition of T.
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Traits in Scala

Scala doesn’t exactly have Java-like interfaces, but its
traits can play a similar role.

trait PQueue {

type T = List[Int]

val empty: T

def insert(n: Int, pq: T): T

def remove(pq: T): (Int,T)

}

(We’ll say more about why Scala uses the terms object

and trait instead of module and interface later...)
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Implementing an interface

Already, the trait interface hides information about the
implementations of the operations. But, now we can go
further and hide the definition of T!

trait PQueue {

type T // abstract!

}

Now we can specify that ListPQueue implements PQueue
using the extends keyword:

object ListPQueue extends PQueue {...}

This assertion needs be checked to ensure that all of the
components of PQueue are present and have the right
types!
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Checking a module against an interface

trait PQueue {

type T

val empty: T

def insert(n: Int, pq: T): T

def remove(pq: T): (Int,T)

}

An implementation needs to define T to be some type τ

It needs to provide a value empty: τ

It needs to provide functions insert and remove with the
corresponding types (replacing T with τ)

If any are missing or types don’t match, error.

(Note: this is related to type inference, and there can be
similar complications!)
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Interfaces allow multiple implementations

We can now provide other implementations of PQueue

object ListPQueue extends PQueue {...}

object SetPQueue extends PQueue {...}

Also, in Scala, objects can be passed as values, and
extends implies a subtyping relationship

So, we can write a function that uses any implementation
of PQueue, and run it with different implementations:

def make(m: PQueue) =

m.insert(42,m.insert(17,m.empty))

scala> make(ListPQueue)
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Data abstraction

Even though ListPQueue satisfies the PQueue interface,
its definition of T = List[Int] is still visible

However, T is abstract to clients that use the PQueue

interface

So, we can’t do this:

scala> def bad(m: PQueue) = m.remove(List(2,1))

<console>:18: error: type mismatch;

found : List[Int]

required: m.T

def bad(m: PQueue) = m.remove(List(2,1))
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Implementing multiple interfaces

An interface gives a “view” of a module (possibly hiding
some details).

Modules can also satisfy more than one interface.

trait HasSize {

type T

def size(x: T): Int

}

object ListPQueue extends PQueue with HasSize {

...

def size(pq: T) = pq.length

}

(This is slightly hacky, since it relies on using the same
type name T as PQueue uses. We’ll revisit this later.)
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Representation independence

If we have two implementations of the same interface,
how do we know they are providing “equivalent”
behavior?

Representation independence means that the clients of
the interface can’t distinguish the two implementations
using the operations of the interface

(even if their actual run time behavior is very different)

This is much easier in a strongly typed language because
the abstraction barrier is enforced by type system

In other languages, client code needs to be more careful
to avoid depending on (or violating) intended abstraction
barriers
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Modules and interfaces, in general

Decl 3 d ::= let x = e; | let fun f (x : τ) = e;

| let rec f (x : τ) : τ ′ = e;

| type T = τ ; | deftype T = τ ;

| module M {d1 · · · dn} | import q

| interface S {s1 · · · sn}
Spec 3 s ::= val x : τ ; | type T ; | type T = τ ;

QName 3 q ::= x | M .q | S .q |

This a simplified form of the (influential) Standard ML module
language. (We aren’t going to formalize the details.)
Note: Allows arbitrary nesting of modules, interfaces
Not shown: need to allow qualified names in code also
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Summary

As programs grow in size, we want to:

split programs into components (packages or modules)
use package or module scope and structured names to
refer to components
use interfaces to hide implementation details from other
parts of the program

We’ve given a high-level idea of how these components fit
together, illustrated using Scala

Next time:

Object-oriented constructs (objects, classes)
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Objects and Classes Advanced constructs

Overview

Last time: “programming in the large”

Programs, packages/namespaces, importing
Modules and interfaces
Mostly: using Scala for examples

Today: the elephant in the room:

Objects and Classes
A taste of “advanced” OOP constructs: inner classes,
anonymous objects and mixins
Illustrate using examples in Scala, and some comparisons
with Java
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Objects

An object is a module with some additional properties:

Encapsulation: Access to an object’s components can
be limited to the object itself (or to a subset of objects)
Self-reference: An object is a value and its methods
can refer to the object’s fields and methods (via an
implicit parameter, often called this or self)
Inheritance: An object can inherit behavior from
another “parent” object

Objects/inheritance are tied to classes in some (but not
all) OO languages

In Scala, the object keyword creates a singleton object
(“class with only one instance”)

(in Java, objects can only be created as instances of
classes)
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Self-Reference

Inside an object definition, the this keyword refers to the
object being defined.

This provides another form of recursion:

object Fact {

def fact (n: Int): Int = {

if (n == 0) {1} else {n * this.fact(n-1)}

}

}

Moreover, as we’ll see, the recursion is open: the method
that is called by this.foo(x) depends on what this is at
run time.
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Encapsulation and Scope

An object can place restrictions on the scope of its
members

Typically used to prevent external interference with
‘internal state’ of object

For example: Java, C++, C# all support

private keyword: “only visible to this object”
public keyword: “visible to all”

Java: package scope (default): visible only to other
components in the same package

Scala: private[X] allows qualified scope: “private to
(class/object/trait/package) X”

Python, Javascript: don’t have (enforced) private scope
(relies on programmer goodwill)
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Classes

A class is an interface with some additional properties:

Instantiation: classes can describe how to construct
associated objects (instances of the class)
Inheritance: classes may inherit from zero or more
parent classes as well as implement zero or more
interfaces
Abstraction: Classes may be abstract, that is, may
name but not define some fields or methods
Dynamic dispatch: The choice of which method is
called is determined by the run-time type of a class
instance, not the static type available at the call

Not all object-oriented languages have classes!

Smalltalk, JavaScript are well-known exceptions
Such languages nevertheless often use prototypes, or
commonly-used objects that play a similar role to classes
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Constructing instances

Classes typically define special functions that create new
instances, called constructors

In C++/Java, constructors are defined explicitly and
separately from the initialized data
In Scala, there is usually one “default” constructor
whose parameters are in scope in the whole class body
(additional constructors can be defined as needed)

Constructors called with the new keyword

class C(x: Int, y: String) {

val i = x

val s = y

def this(x: Int) = this(x,"default")

}

scala> val c1 = new C(1,"abc")

scala> val c2 = new C(1)
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Inheritance

An object can inherit from another.

This means: the parent object, and its components,
become “part of” the child object

accessible using super keyword
(though some components may not be directly
accessible)

In Java (and Scala), a class extends exactly one
superclass (Object, if not otherwise specified)

In C++, a class can have multiple superclasses

Non-class-based languages, such as JavaScript and
Smalltalk, support inheritance directly on objects via
extension
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Subtyping

As (briefly) mentioned last week, an object Obj that
extends a trait Tr is automatically a subtype (Obj <: Tr)

Likewise, a class Cl that extends a trait Tr is a subtype of
Tr (Cl <: Tr)

A class (or object) Sub that extends another class Super

is a subtype of Super (Sub <: Super)

However, subtyping and inheritance are distinct features:

As we’ve already seen, subtyping can exist without
inheritance
moreover, subtyping is about types, whereas inheritance
is about behavior (code)
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Inheritance and encapsulation

Inheritance complicates the picture for encapsulation
somewhat.

private keyword prevents access from outside the class
(including any subclasses).

protected keyword means “visible to instances of this
object and its subclasses”

Scala: Both private and protected can be qualified
with a scope [X] where X is a package, class or object.

class A { private[A] val a = 1

protected[A] val b = 2 }

class B extends A {

def foo() = a + b

} // "a" not found

Objects and Classes Advanced constructs

Cross-instance sharing

Classes in Java can have static fields/members that are
shared across all instances

Static methods can access private fields and methods

static is also allowed in interfaces (but only as of Java 8)

Class with only static members ∼ module

C++: friend keyword allows sharing between classes on
a case-by-case basis
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Companion Objects

Scala has no static keyword

Scala instead uses companion objects

Companion = object with the same name as the class
and defined in the same scope
Companions can access each others’ private
components

object Count { private var x = 1 }

class Count { def incr() {Count.x = Count.x+1} }

Note: This can only be done in compiled code, not
interactively
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Multiple inheritance and the diamond problem

As noted, C++ allows multiple inheritance

Suppose we did this (in Scala terms):

class Win(val x: Int, val y: Int)

class TextWin(...) extends Win

class GraphicsWin(...) extends Win

class TextGraphicsWin(...)

extends TextWin and GraphicsWin

In C++, this means there are two copies of Win inside
TextGraphicsWin

They can easily become out of sync, causing problems

Multiple inheritance is also difficult to implement
(efficiently); many languages now avoid it
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Abstraction

A class may leave some components undefined
Such classes must be marked abstract in Java, C++
and Scala
To instantiate an abstract class, must provide definitions
for the methods (e.g. in a subclass)

Abstract classes can define common behavior to be
inherited by subclasses
In Scala, abstract classes can also have unknown type
components

(optionally with subtype constraints)

abstract class ConstantVal {

type T <: AnyVal

val c: T

} // a constant of any value type
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Dynamic dispatch

An abstract method can be implemented in different ways
by different subclasses

When an abstract method is called on an instance, the
corresponding implementation is determined by the
run-time type of the instance.

(necessarily in this case, since the abstract class provides
no implementation)

abstract class A { def foo(): String}

class B extends A { def foo() = "B"}

class C extends A { def foo() = "C" }

scala> val b:A = new B

scala> val c:A = new C

scala> (b.foo(), c.foo())
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Overriding

An inherited method that is already defined by a
superclass can be overridden in a subclass
This means that the subclass’s version is called on that
subclass’s instances using dynamic dispatch
In Java, @Override annotation is optional, checked
documentation that a method overrides an inherited
method
In Scala, must use override keyword to clarify intention
to override a method

class A { def foo() = "A"}

class B extends A { override def foo() = "B" }

scala> val b: A = new B

scala> b.foo()

class C extends A { def foo() = "C" } // error
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Type tests and coercions

Given x: A, Java/Scala allow us to test whether its
run-time type is actually subclass B

scala> b.isInstanceOf[B]

and to coerce such a reference to y: B

scala> val b2: B = b.asInstanceOf[B]

Warning: these features can be used to violate type
abstraction!

def weird[A](x: A) = if (x.isInstanceOf[Int]) {

(x.asInstanceOf[Int]+1).asInstanceOf[A]

} else {x}
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Advanced constructs

So far, we’ve covered the “basic” OOP model (circa Java
1.0)

Modern languages extend this in several ways

We can define a class/object inside another class:

As a member of the enclosing class (tied to a specific
instance)
or as a static member (shared across all instances)
As a local definition inside a method
As an anonymous local definition

Some languages also support mixins (e.g. Scala traits)

Scala supports similar, somewhat more uniform
composition of classes, objects, and traits
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Classes/objects as members

In Scala, classes and objects (and traits) can be nested
arbitrarily

class A { object B { var x = 1 } }

scala> val a = new A

object C {class D { var x = 1 } }

scala> val d = new C.D

class E { class F { var x = 1 } }

scala> val e = new E

scala> val f = new e.F
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Summary

Today

Objects, encapsulation, self-reference
Classes, inheritance, abstraction, dynamic dispatch

This is only the tip of a very large iceberg...

there are almost as many “object-oriented”
programming models as languages
the design space, and “right” formalisms, are still active
areas of research

Next time:

Inner classes, anonymous objects, mixins, parameterized
types
Combining object-oriented and functional programming
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Advanced constructs Functions as objects Iterators and comprehensions

Overview

We’ve now covered:

basics of functional programming (with semantics)
basics of modular and OO programming (via Scala
examples)

Today, finish discussion of “programming in the large”:

some more advanced OO constructs
and how they co-exist with/support functional
programming in Scala
list comprehensions as an extended example
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Advanced constructs

So far, we’ve covered the “basic” OOP model (circa Java
1.0), plus some Scala-isms

Modern languages extend this model in several ways

We can define a structure (class/object/trait) inside
another:

As a member of the enclosing class (tied to a specific
instance)
or as a static member (shared across all instances)
As a local definition inside a method
As an anonymous local definition

Java (since 1.5) and Scala support “generics”
(parameterized types as well as polymorphic functions)

Some languages also support mixins (e.g. Scala traits)
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Motivating inner class example

A nested/inner class has access to the private/protected
members of the containing class

So, we can use nested classes to expose an interface
associated with a specific object:

class List<A> {

private A head;

private List<A> tail;

class ListIterator<A> implements Iterator<A> {

... (can access head, tail)

}

}
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Classes/objects as members

In Scala, classes and objects (and traits) can be nested
arbitrarily

class A { object B { val x = 1 } }

scala> val a = new A

object C {class D { val x = 1 } }

scala> val d = new C.D

class E { class F { val x = 1 } }

scala> val e = new E

scala> val f = new e.F
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Local classes

A local class (Java terminology) is a class that is defined
inside a method

def foo(): Int = {

val z = 1

class X { val x = z + 1}

return (new X).x

}

scala> foo()

res0: Int = 2
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Anonymous classes/objects

Given an interface or parent class, we can define an
anonymous instance without giving it an explicit name

In Java, called an anonymous local class

In Scala, looks like this:

abstract class Foo { def foo() : Int }

val foo1 = new Foo { def foo() = 42 }

We can also give a local name to the instance (useful
since this may be shadowed)

val foo2 = new Foo { self =>

val x = 42

def foo() = self.x

}
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Parameterized types

As mentioned earlier, types can take parameters

For example, List[A] has a type parameter A

This is related to (but different from) polymorphism

A polymorphic function (like map) has a type that is
parameterized by a given type.
A parameterized type (like List[_]) is a type
constructor: for every type T, it constructs a type
List[T].
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Defining parameterized types

In Scala, there are basically three ways to define
parameterized types:

In a type abbreviation (NB: multiple parameters)

type Pair[A,B] = (A,B)

in a (abstract) class definition

abstract class List[A]

case class Cons[A](head: A, tail: List[A])

extends List[A]

in a trait definition

trait Stack[A] { ...

}
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Using parameterized types inside a structure

The type parameters of a structure are implicitly available
to all components of the structure.

Thus, in the List[A] class, map, flatMap, filter are
declared as follows:

abstract class List[A] {

...

def map[B](f: A => B): List[B]

def filter(p: A => Boolean): List[A]

def flatMap[B](f: A => List[B]): List[B]

// applies f to each element of this,

// and concatenates results

}
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Parameterized types and subtyping

By default, a type parameter is invariant

That is, neither covariant nor contravariant

To indicate that a type parameter is covariant, we can
prefix it with +

abstract class List[+A] // see tutorial 6

To indicate that a type parameter is contravariant, we
can prefix it with -

trait Fun[-A,+B] // see next few slides...

Scala checks to make sure these variance annotations
make sense!
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Type bounds

Type parameters can be given subtyping bounds
For example, in an interface (that is, trait or abstract
class) I:

type T <: C

says that abstract type member T is constrained to be a
subtype of C.
This is checked for any module implementing I

Similarly, type parameters to function definitions, or
class/trait definitions, can be bounded:

fun f[A <: C](...) = ...

class D[A <: C] { ... }

Upper bounds A >: U are also possible...
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Traits as mixins

So far we have used Scala’s trait keyword for
“interfaces” (which can include type members, unlike
Java)

However, traits are considerably more powerful:

Traits can contain fields
Traits can provide (“default”) method implementations

This means traits provide a powerful form of modularity:
mixin composition

Idea: a trait can specify extra fields and methods
providing a “behavior”
Multiple traits can be “mixed in”; most recent definition
“wins” (avoiding some problems of multipel inheritance)

Java 8’s support for “default” methods in interfaces also
allows a form of mixin composition.
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Tastes great, and look at that shine!

Shimmer is a floor wax!

trait FloorWax { def clean(f: Floor) { ... } }

No, it’s a delicious dessert topping!

trait TastyDessertTopping {

val calories = 1000

def addTo(d: Dessert) { d.addCal(calories) }

}

In Scala, it can be both:

object Shimmer extends FloorWax

with TastyDessertTopping { ... }
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Pay no attention to the man behind the curtain...

Scala bills itself as a “multi-paradigm” or
“object-oriented, functional” language

How do the “paradigms” actually fit together?

Some features, such as case classes, are more obviously
“object-oriented” versions of “functional” constructs

Until now, we have pretended pairs, λ-abstractions, etc.
are primitives in Scala

They are not primitives; and they need to be
implemented in a way compatible with Java/JVM
assumptions

But how do they really work?
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Function types as interfaces

Suppose we define the following interface:

trait Fun[-A,+B] { // A contravariant, B covariant

def apply(x: A): B

}

This says: an object implementing Fun[A,B] has an
apply method

Note: This is basically the Function trait in the Scala
standard library!

Scala translates f(x) to f.apply(x)

Also, {x: T => e} is essentially syntactic sugar for
new Function[Int,Int] {def apply(x:T) = e }!
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Iterators and collections in Java

Java provides standard interfaces for iterators and
collections

interface Iterator<E> {

boolean hasNext()

E next()

...

}

interface Collection<E> {

Iterator<E> iterator()

...

}

These allow programming over different types of
collections in a more abstract way than “indexed for loop”
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Iterators and foreach loops

Since Java 1.5, one can write the following:

for(Element x : coll) {

... do stuff with x ...

}

Provided coll implements the Collection<Element>

interface

This is essentially syntactic sugar for:

for(Iterator<Element> i = coll.iterator();

i.hasNext(); ) {

Element x = i.next();

... do stuff with x ...

}
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foreach in Scala

Scala has a similar for construct (with slightly different
syntax)

for (x <- coll) { ... do something with x ... }

For example:

scala> for (x <- List(1,2,3)) { println(x) }

1

2

3
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foreach in Scala

The construct for (x <- coll) { e } is syntactic
sugar for:

coll.foreach{x => ... do something with x ...}

if x: T and coll has method foreach: (A => ()) => ()

Scala expands for loops before checking that coll

actually provides foreach of appropriate type

If not, you get a somewhat mysterious error message...

scala> for (x <- 42) {println(x)}

<console>:11: error: value foreach is not a

member of Int
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Comprehensions: Mapping

Scala (in common with Haskell, Python, C#, F# and
others) supports a rich “comprehension syntax”

Example:

scala> for(x <- List("a","b","c")) yield (x + "z")

res0: List[Int] = List(az,bz,cz)

This is shorthand for:

List("a","b","c").map{x => x + "z"}

where map[B](f: A => B): List[B] is a method of
List[A].

(In fact, this works for any object implementing such a
method.)

Advanced constructs Functions as objects Iterators and comprehensions

Comprehensions: Filtering

Comprehensions can also include filters

scala> for(x <- List("a","b","c");

if (x != "b")) yield (x + "z")

res0: List[Int] = List(az,cz)

This is shorthand for:

List("a","b","c").filter{x => x != "b"}

.map{x => x + "z"}

where filter(f: A => Boolean): List[A] is a method
of List[A].
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Comprehensions: Multiple Generators

Comprehensions can also iterate over several lists

scala> for(x <- List("a","b","c");

y <- List("a","b","c");

if (x != y)) yield (x + y)

res0: List[Int] = List(ab,ac,ba,bc,ca,cb)

This is shorthand for:

List("a","b","c").flatMap{x =>

List("a","b","c").flatMap{y =>

if (x != y) List(x + y) else {Nil}}}

where flatMap(f: A => List[B]): List[B] is a method
of List[A].

Advanced constructs Functions as objects Iterators and comprehensions

Summary

In the last few lectures we’ve covered

Modules and interfaces
Objects and classes
How they interact with subtyping, type abstraction
and how they can be used to implement “functional”
features (particularly in Scala)

This concludes our tour of “programming in the large”

(though there is much more that could be said)

Next time:

imperative programming
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The story so far

So far we’ve mostly considered pure computations.

Once a variable is bound to a value, the value never
changes.

that is, variables are immutable.

This is not how most programming languages treat
variables!

In most languages, we can assign new values to
variables: that is, variables are mutable by default

Just a few languages are completely “pure” (Haskell).

Others strike a balance:

e.g. Scala distinguishes immutable (val) variables and
mutable (var) variables
similarly const in Java, C
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Mutable vs. immutable

Advantages of immutability:

Referential transparency (substitution of equals for
equals); programs easier to reason about and optimize
Types tell us more about what a program can/cannot do

Advantages of mutability:

Some common data structures easier to implement
Easier to translate to machine code (in a
performance-preserving way)
Seems closely tied to popular OOP model of “objects
with hidden state and public methods”

Today we’ll consider programming with assignable
variables and loops (LWhile) and then discuss procedures
and other forms of control flow
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While-programs

Let’s start with a simple example: LWhile, with statements

Stmt 3 s ::= skip | s1; s2 | x := e

| if e then s1 else s2 | while e do s

skip does nothing

s1; s2 does s1, then s2

x := e evaluates e and assigns the value to x

if e then s1 else s2 evaluates e, and evaluates s1 or s2
based on the result.

while e do s tests e. If true, evaluate s and loop;
otherwise stop.

We typically use {} to parenthesize statements.
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A simple example: factorial again

In Scala, mutable variables can be defined with var

var n = ...

var x = 1

while(n > 0) {

x = n * x

n = n-1

}

In LWhile, all variables are mutable

x := 1; while (n > 0) do {x := n ∗ x ; n := n − 1}
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An interpreter for LWhile

We will define a pure interpreter:

def exec(env: Env[Value], s: Stmt): Env[Value] =

s match {

case Skip => env

case Seq(s1,s2) =>

val env1 = exec(env, s1)

exec(env1,s2)

case IfThenElseS(e,s1,s2) => eval(env,e) match {

case BoolV(true) => exec(env,s1)

case BoolV(false) => exec(env,s2)

}

...

}
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An interpreter for LWhile

def exec(env: Env[Value], s: Stmt): Env[Value] =

s match {

...

case WhileDo(e,s) => eval(env, e) match {

case BoolV(true) =>

val env1 = exec(env,s)

exec(env1, WhileDo(e,s))

case BoolV(false) => env

}

case Assign(x,e) =>

val v = eval(env,e)

env + (x -> v)

}
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While-programs: evaluation

σ, s ⇓ σ′

σ, skip ⇓ σ
σ, s1 ⇓ σ′ σ′, s2 ⇓ σ′′

σ, s1; s2 ⇓ σ′′

σ, e ⇓ true σ, s1 ⇓ σ′

σ, if e then s1 else s2 ⇓ σ′
σ, e) ⇓ false σ, s2 ⇓ σ′

σ, if e then s1 else s2 ⇓ σ′

σ, e ⇓ true σ, s ⇓ σ′ σ′, while e do s ⇓ σ′′

σ, while e do s ⇓ σ′′

σ, e ⇓ false
σ, while e do s ⇓ σ

σ, e ⇓ v

σ, x := e ⇓ σ[x := v ]

Here, we use evaluation in context σ, e ⇓ v (cf.
Assignment 2)
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Examples

x := y + 1; z := 2 ∗ x

σ1, y + 1 ⇓ 2
σ1, x := y + 1 ⇓ σ2

σ2, 2 ∗ x ⇓ 4
σ2, z := 2 ∗ x ⇓ σ3

σ1, x := y + 1; z := 2 ∗ x ⇓ σ3

where

σ1 = [y := 1]

σ2 = [x := 2, y := 1]

σ3 = [x := 2, y := 1, z := 4]
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Other control flow constructs

We’ve taken “if” (with both “then” and “else” branches)
and “while” to be primitive

We can define some other operations in terms of these:

if e then s ⇐⇒ if e then s else skip

do s while e ⇐⇒ s; while e do s

for (i ∈ n . . .m) do s ⇐⇒ i := n;

while i ≤ m do {
s; i = i + 1

}

as seen in C, Java, etc.
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Procedures

LWhile is not a realistic language.
Among other things, it lacks procedures
Example (C/Java):
int fact(int n) {

int x = 1;

while(n > 0) {

x = x*n;

n = n-1;

}

return x;

}

Procedures can be added to LWhile (much like functions in
LRec)
Rather than do this, we’ll show how to combine LWhile

with LRec later.
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Structured vs. unstructured programming

[Non-examinable]

All of the languages we’ve seen so far are structured

meaning, control flow is managed using if, while,
procedures, functions, etc.

However, low-level machine code doesn’t have any of
these.

A machine-code program is just a sequence of
instructions in memory

The only control flow is branching:

“unconditionally go to instruction at address n”
“if some condition holds, go to instruction at address n”

Similarly, “goto” statements were the main form of
control flow in many early languages
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“GO TO” Considered Harmful [Non-examinable]

In a famous letter (CACM 1968), Dijkstra listed many
disadvantages of “goto” and related constructs

It allows you to write “spaghetti code”, where control
flow is very difficult to decipher

For efficiency/historical reasons, many languages include
such “unstructured” features:

“goto” — jump to a specific program location
“switch” statements
“break” and “continue” in loops

It’s important to know about these features, their pitfalls
and their safe uses.
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goto in C [Non-examinable]

The C (and C++) language includes goto

In C, goto L jumps to the statement labeled L

A typical (relatively sane) use of goto

... do some stuff ...

if (error) goto error;

... do some more stuff ...

if (error2) goto error;

... do some more stuff...

error: .. handle the error...

We’ll see other, better-structured ways to do this using
exceptions.
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goto in C: pitfalls [Non-examinable]

The scope of the goto L statement and the target L
might be different

for that matter, they might not even be in the same
procedure!

For example, what does this do:

goto L;

if(1) {

int k = fact(3);

L: printf("%d",k);

}

Answer: k will be some random value!
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goto: caveats [Non-examinable]

goto can be used safely in C, but is best avoided unless
you have a really good reason

e.g. very high performance/systems code

Safe use: within same procedure/scope

Or: to jump “out” of a nested loop
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goto fail [Non-examinable]

What’s wrong with this picture?

if (error test 1)

goto fail;

if (error test 2)

goto fail;

goto fail;

if (error test 3)

goto fail;

...

fail: ... handle error ...

(In C, braces on if are optional; if they’re left out, only
the first goto fail statement is conditional!)

This led to an Apple SSL security vulnerability in 2014
(see https://gotofail.com/)
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switch statements [Non-examinable]

We’ve seen case or match constructs in Scala

The switch statement in C, Java, etc. is similar:

switch (month) {

case 1: print("January"); break;

case 2: print("February"); break;

...

default: print("unknown month"); break;

}

However, typically the argument must be a base type like
int
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switch statements: gotchas [Non-examinable]

See the break; statement?

It’s an important part of the control flow!

it says “now jump out the end of the switch statement”

month = 1;

switch (month) {

case 1: print("January");

case 2: print("February");

...

default: print("unknown month");

} // prints all months!

Can you think of a good reason why you would want to
leave out the break?
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Break and continue [Non-examinable]

The break and continue statements are also allowed in
loops in C/Java family languages.

for(i = 0; i < 10; i++) {

if (i % 2 == 0) continue;

if (i == 7) break;

print(i);

}

“Continue” says Skip the rest of this iteration of the loop.

“Break” says Jump to the next statement after this loop

This will print 135 and then exit the loop.
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Break and continue [Non-examinable]

The break and continue statements are also allowed in
loops in C/Java family languages.

for(i = 0; i < 10; i++) {

if (i % 2 == 0) continue;

if (i == 7) break;

print(i);

}

“Continue” says Skip the rest of this iteration of the loop.

“Break” says Jump to the next statement after this loop

This will print 135 and then exit the loop.
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Labeled break and continue [Non-examinable]

In Java, break and continue can use labels.

OUTER: for(i = 0; i < 10; i++) {

INNER: for(j = 0; j < 10; j++) {

if (j > i) continue INNER;

if (i == 4) break OUTER;

print(j);

}

}

This will print 001012 and then exit the loop.

(Labeled) break and continue accommodate some of the
safe uses of goto without as many sharp edges
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Labeled break and continue [Non-examinable]

In Java, break and continue can use labels.

OUTER: for(i = 0; i < 10; i++) {

INNER: for(j = 0; j < 10; j++) {

if (j > i) continue INNER;

if (i == 4) break OUTER;

print(j);

}

}

This will print 001012 and then exit the loop.

(Labeled) break and continue accommodate some of the
safe uses of goto without as many sharp edges
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Summary

Many real-world programming languages have:
1 mutable state
2 structured control flow (if/then, while, exceptions)
3 procedures

We’ve showed how to model and interpret LWhile, a simple
imperative language

and discussed a variety of (unstructured) control flow
structures, such as “goto”, “switch” and
“break/continue”.

Next time:

Small-step semantics and type soundness
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Overview

For the remaining lectures we consider some cross-cutting
considerations for programming language design.

Last time: Imperative programming

Today:

Finer-grained (small-step) evaluation
Type safety
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Refresher

In the first 6 lectures we covered:

Basic arithmetic (LArith)
Conditionals and booleans (LIf)
Variables and let-binding (LLet)
Functions and recursion (LRec)
Data structures (LData)

formalized using big-step evaluation (e ⇓ v) and type
judgments (Γ ` e : τ)

and implemented using Scala interpreters
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Limitations of big-step semantics

Big-step semantics is convenient, but also limited

It says how to evaluate the “whole program” (expression)
to its “final value”

But what if there is no final value?

Expressions like 1 + true simply don’t evaluate
Nonterminating programs don’t evaluate either, but for
a different reason!

As we will see in later lectures, it is also difficult to deal
with other features, like exceptions, using big-step
semantics
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Small-step semantics

We will now consider an alternative: small-step semantics

e 7→ e ′

which says how to evaluate an expression “one step at a
time”

If e0 7→ · · · 7→ en then we write e0 7→∗ en. (in particular,
for n = 0 we have e0 7→∗ e0)

We want it to be the case that e 7→∗ v if and only if
e ⇓ v .

But 7→ provides more detail about how this happens.

It also allows expressions to “go wrong” (get stuck before
reaching a value)
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Small-step semantics: LArith

e 7→ e ′ for LArith

e1 7→ e ′1
e1 ⊕ e2 7→ e ′1 ⊕ e2

e2 7→ e ′2
v1 ⊕ e2 7→ v1 ⊕ e ′2

v1 + v2 7→ v1 +N v2 v1 × v2 7→ v1 ×N v2

If the first subexpression of ⊕ can take a step, apply it

If the first subexpression is a value and the second can
take a step, apply it

If both sides are values, perform the operation

Example:
1 + (2× 3) 7→ 1 + 6 7→ 7
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Small-step semantics: LIf

e 7→ e ′ for LIf

v == v 7→ true

v1 6= v2
v1 == v2 7→ false

e 7→ e ′

if e then e1 else e2 7→ if e ′ then e1 else e2

if true then e1 else e2 7→ e1

if false then e1 else e2 7→ e2

If the conditional test is not a value, evaluate it one step

Otherwise, evaluate the corresponding branch

if 1 == 2 then 3 else 4 7→ if false then 3 else 4

7→ 4
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Small-step semantics: LLet

e 7→ e ′ for LLet

e1 7→ e ′1
let x = e1 in e2 7→ let x = e ′1 in e2

let x = v1 in e2 7→ e2[v1/x ]

If the expression e1 is not yet a value, evaluate it one step

Otherwise, substitute it and proceed

Example:

let x = 1 + 1 in x × x 7→ let x = 2 in x × x

7→ 2× 2

7→ 4
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Small-step semantics: LLam

e 7→ e ′ for LLam

e1 7→ e ′1
e1 e2 7→ e ′1 e2

e2 7→ e ′2
v1 e2 7→ v1 e ′2

(λx . e) v 7→ e[v/x ]

If the function part is not a value, evaluate it one step

If the function is a value and the argument isn’t, evaluate
it one step

If both function and argument are values, substitute and
proceed

((λx .λy .x + y) 1) 2 7→ (λy .1 + y) 2

7→ 1 + 2 7→ 3
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Small-step semantics: LRec

e 7→ e ′ for LRec

(rec f (x). e) v 7→ e[rec f (x).e/f , v/x ]

Same rules for evaluation inside application
Note that we need to substitute rec f (x).e for f .
Suppose fact is the factorial function:

fact 2 7→ if 2 == 0 then 1 else 2× fact(2− 1)
7→ if false then 1 else 2× fact(2− 1)
7→ 2× fact(2− 1) 7→ 2× fact(1)
7→ 2× (if 1 == 0 then 1 else 1× fact(1− 1))
7→ 2× (if false then 1 else 1× fact(1− 1))
7→ 2× (1× fact(1− 1)) 7→ 2× (1× fact(0))
7→∗ 2× (1× 1) 7→ 2× 1 7→ 2

Small-step semantics Judgments, Rules, and Induction Type soundness

Judgments and Rules, in general

A judgment is a relation among one or more abstract
syntax trees.

Examples so far: e ⇓ v , Γ ` e : τ , e 7→ e ′

We have been defining judgments using rules of the form:

Q
P1 · · · Pn

Q

where P1, . . . ,Pn and Q are judgments.
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Meaning of Rules

A rule of the form:
Q

is called an axiom. It says that Q is always derivable.

A rule of the form

P1 · · · Pn

Q

says that judgment Q is derivable if P1, . . . ,Pn are
derivable.

Symbols like e, v , τ in rules stand for arbitrary
expressions, values, or types.

(If you have taken Logic Programming: These rules are a
lot like Prolog clauses!)
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Rule induction

Induction on derivations of e ⇓ v

Suppose P(−,−) is a predicate over pairs of expressions and
values. If:

P(v , v) holds for all values v

If P(e1, v1) and P(e2, v2) then P(e1 + e2, v1 +N v2)

If P(e1, v1) and P(e2, v2) then P(e1 × e2, v1 ×N v2)

then e ⇓ v implies P(e, v).

Rule induction can be derived from mathematical
induction on the size (or height) of the derivation tree.

(Much like structural induction.)

We won’t formally prove this.
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Example: e ⇓ v implies e 7→∗ v

As an example, we’ll show a few cases of the forward
direction of:

Theorem (Equivalence of big-step and small-step evaluation)

e ⇓ v if and only if e 7→∗ v .

Base case.

If the derivation is of the form

n ⇓ n

for some number n, then e = n is already a value v = n, so no
steps are needed to evaluate it, i.e. n 7→∗ n in zero steps.
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Example: e ⇓ v implies e 7→∗ v

Inductive case.

If the derivation is of the form

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

then by induction, we know e1 7→∗ v1 and e2 7→∗ v2. Using the
small-step rules, we can then show

e1 + e2 7→∗ v1 + e2 7→∗ v1 + v2 7→ v1 +N v2

The case for × is similar.
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Type soundness

The central property of a type system is soundness.

Roughly speaking, soundness means “well-typed programs
don’t go wrong” [Milner].

But what exactly does “go wrong” mean?

For large-step: hard to say
For small-step: “go wrong” means “stuck” expression e
that is not a value and cannot take a step.

We could show something like:

Theorem (Soundness)

If ` e : τ and e 7→∗ v then ` v : τ .

This says that if an expression evaluates to a value, then
the value has the right type.
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Type soundness revisited

We can decompose soundness into two parts:

Lemma (Progress)

If ` e : τ then either e is a value or for some e ′ we have
e 7→ e ′.

Lemma (Preservation)

If ` e : τ and e 7→ e ′ then ` e ′ : τ

Combining these two, can show:

Theorem (Soundness)

If ` e : τ and e 7→∗ v then ` v : τ .

We will sketch these properties for LIf (leaving out a lot
of formal detail)
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Progress for LIf

Progress is proved by induction on ` e : τ derivations. We
show some representative cases.

Progress for +.

` e1 : int e2 : int
` e1 + e2 : int

If the derivation is of the above form, then by induction e1 is
either a value or can take a step, and likewise for e2. There are
three cases.

If e1 7→ e ′1 then e1 + e2 7→ e ′1 + e2.

If e1 is a value v1 and e2 7→ e ′2, then v1 + e2 7→ v1 + e ′2.

If both e1 and e2 are values then they must both be
numbers n1, n2 ∈ N, so e1 + e2 7→ n1 +N n2.
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Progress for LIf

Progress for if.

If the derivation is of the form

` e : bool ` e1 : τ ` e2 : τ
` if e then e1 else e2 : τ

then by induction, either e is a value or can take a step. There
are two cases:

If e 7→ e ′ then
if e then e1 else e2 7→ if e ′ then e1 else e2.

If e is a value, it must be either true or false. Then
either if true then e1 else e2 7→ e1 or
if false then e1 else e2 7→ e2.
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Preservation for LIf

Preservation is proved by induction on the structure of ` e : τ .
We’ll consider some representative cases:

Preservation for +.

` e1 : int ` e2 : int
` e1 + e2 : int

If the derivation is of the above form, there are three cases.

If ei = vi and v1 + v2 7→ v1 +N v2 then obviously
` v1 +N v2 : int.

If e1 + e2 7→ e ′1 + e2 where e1 7→ e ′1, then since ` e1 : int,
we have ` e ′1 : int, so ` e ′1 + e2 : int also.

The case where e1 = v1 and v1 + e2 7→ v1 + e ′2 is similar.
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Preservation for LIf

Preservation for if.

If the derivation is of the form

` e : bool ` e1 : τ ` e2 : τ
` if e then e1 else e2 : τ

then there are three cases:

If if e then e1 else e2 7→ if e ′ then e1 else e2 where
e 7→ e ′, then by induction we can show that ` e ′ : bool
and ` if e ′ then e1 else e2 : τ .

If e = true then if true then e1 else e2 7→ e1, so we
already know ` e1 : τ .

The case for if false then e1 else e2 7→ e2 is similar.
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Type soundness for LLet [non-examinable]

Progress: straightforward (a “let” can always take a step)

Preservation: Suppose we have

` v1 : τ ′ x :τ ′ ` e2 : τ
` let x = v1 in e2 : τ let x = v1 in e2 7→ e2[v1/x ]

We need to show that ` e2[v1/x ] : τ

For this we need a substitution lemma

Lemma (Substitution)

If Γ, x :τ ′ ` e : τ and Γ ` e ′ : τ ′ then Γ ` e[e ′/x ] : τ
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Type soundness for LRec [non-examinable]

Progress: If an application term is well-formed:

` e1 : τ1 → τ2 ` e2 : τ1
` e1 e2 : τ2

then by induction, e1 is either a value or e1 7→ e ′1 for some
e ′1. If it is a value, it must be either a lambda-expression
or a recursive function, so e1 e2 can take a step.
Otherwise, e1 e2 7→ e ′1 e2.

Preservation: Similar to let, using substitution lemma
for the cases

(λx . e) v 7→ e[v/x ]
(rec f (x). e) v 7→ e[rec f (x). e/f , v/x ]
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Summary

Today we have presented

Small-step evaluation: a finer-grained semantics
Induction on derivations
Type soundness (details for LIf)
Sketch of type soundness for LRec [Non-examinable]

Deep breath: No more proofs from now on.

Remaining lectures cover cross-cutting language features,
which often have subtle interactions with each other

Next time: Guest lecture by Michel Steuwer on DSLs
and rewrite-based optimizations for
performance-portable parallel programming
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References Semantics of references Resources

Overview

Over the final few lectures we are exploring cross-cutting
design issues

Today we consider a way to incorporate mutable
variables/assignment into a functional setting:

References
Interaction with subtyping and polymorphism
Resources, more generally

References Semantics of references Resources

References

In LWhile, all variables are mutable and global

This makes programming fairly tedious and it’s easy to
make mistakes

There’s also no way to create new variables (short of
coming up with a new variable name)

Can we smoothly add mutable state side-effects to LPoly?

Can we provide imperative features within a
mostly-functional language?
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References

Consider the following language LRef extending LPoly:

e ::= · · · | ref(e) | !e | e1 := e2 | e1; e2

τ ::= · · · | ref[τ ]

Idea: ref(e) evaluates e to v and creates a new
reference cell containing v

!e evaluates e to a reference and looks up its value

e1 := e2 evaluates e1 to a reference cell and e2 to a value
and assigns the value to the reference cell.

e1; e2 evaluates e1, ignores value, then evaluates e2
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References: Types

Γ ` e : τ for LRef

Γ ` e : τ
Γ ` ref(e) : ref[τ ]

Γ ` e : ref[τ ]

Γ ` !e : τ

Γ ` e1 : ref[τ ] Γ ` e2 : τ

Γ ` e1 := e2 : unit
Γ ` e1 : τ ′ Γ ` e2 : τ

Γ ` e1; e2 : τ

ref(e) creates a reference of type τ if e : τ

!e gets a value of type τ if e : ref[τ ]

e1 := e2 updates reference e1 : ref[τ ] with value e2 : τ .
Its return value is ().

e1; e2 evaluates e1, ignores the resulting value, and
evaluates e2.
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References in Scala

Recall that var in Scala makes a variable mutable:

class Ref[A](val x: A) {

private var a = x

def get = a

def set(y: A) = { a = y }

}

scala> val x = new Ref[Int](1)

x: Ref[Int] = Ref@725bef66

scala> x.get

res3: Int = 1

scala> x.set(12)

scala> x.get

res5: Int = 12
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Interpreting references in Scala using Ref

case class Ref(e: Expr) extends Expr

case class Deref(e: Expr) extends Expr

case class Assign(e: Expr, e2: Expr) extends Expr

case class Cell(l: Ref[Value]) extends Value

def eval(env: Env[Value], e: Expr) = e match { ...

case Ref(e) => Cell(new Ref(eval(env,e)))

case Deref(e) => eval(env,e) match {

case Cell(r) => r.get

}

case Assign(e1,e2) => eval(env,e1) match {

case Cell(r) => r.set(eval(env,e2))

}

} // Note: This isn’t how Assignment 3 does it!
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Imperative Programming and Procedures

Once we add references to a functional language (e.g.
LPoly), we can use function definitions and
lambda-abstraction to define procedures

Basically, a procedure is just a function with return type
unit

val x = new Ref(42)

def incrBy(n: Int): () = {

x.set(x.get + n)

}

Such a procedure does not return a value, and is only
executed for its “side effects” on references

Using the same idea, we can embed all of the constructs
of LWhile in LRef (see tutorial)
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References: Semantics

Small steps σ, e 7→ σ′, e ′, where σ : Loc → Value. “in
initial state σ, expression e can step to e ′ with state σ′.”

What does ref(e) evaluate to? A pointer or memory cell
location, ` ∈ Loc

v ::= · · · | `

These special values only appear during evaluation.

σ, e 7→ σ′, e ′ for LRef

` /∈ locs(σ)

σ, ref(v) 7→ σ[` := v ], `

σ, !` 7→ σ, σ(`) σ, ` := v 7→ σ[` := v ], ()

References Semantics of references Resources

References: Semantics

We also need to change all of the existing small-step rules
to pass σ through...

σ, e 7→ σ′, e ′

σ, e1 7→ σ′, e ′1
σ, e1 ⊕ e2 7→ σ′, e ′1 ⊕ e2

σ, e2 7→ σ′, e ′2
σ, v1 ⊕ e2 7→ σ′, v1 ⊕ e ′2

σ, v1 + v2 7→ σ, v1 +N v2 σ, v1 × v2 7→ σ, v1 ×N v2

...

Subexpressions may contain references (leading to
allocation or updates), so we need to allow σ to change in
any subexpression evaluation step.
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References: Semantics

Finally, we need rules that evaluate inside the reference
constructs themselves:

σ, e 7→ σ′, e ′

σ, e 7→ σ′, e ′

σ, ref(e) 7→ σ′, ref(e ′)
σ, e 7→ σ′, e ′

σ, !e 7→ σ′, !e ′

σ, e1 7→ σ′, e ′1
σ, e1 := e2 7→ σ′, e ′1 := e2

σ, e2 7→ σ′, e ′2
σ, v1 := e2 7→ σ′, v1 := e ′2

Notice again that we need to allow for updates to σ.

For example, to evaluate ref(ref(42))
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References: Examples

Simple example

let r = ref(42) in r := 17; !r

7→ [` := 42], let r = ` in r := 17; !r

7→ [` := 42], ` := 17; !`

7→ [` := 17], !` 7→ [` := 17], 17

Aliasing/copying

let r = ref(42) in (λx .λy .x := !y + 1) r r

7→ [` = 42], let r = ` in (λx .λy .x := !y + 1) r r

7→ [` = 42], (λx .λy .x := !y + 1) ` `

7→ [` = 42], (λy .!` := y + 1) `

7→ [` = 42], ` := !` + 1 7→ [` = 42], ` := 42 + 1

7→ [` = 42], ` := 43 7→ [` = 43], ()
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References: Examples

Simple example

let r = ref(42) in r := 17; !r

7→ [` := 42], let r = ` in r := 17; !r

7→ [` := 42], ` := 17; !`

7→ [` := 17], !` 7→ [` := 17], 17

Aliasing/copying

let r = ref(42) in (λx .λy .x := !y + 1) r r

7→ [` = 42], let r = ` in (λx .λy .x := !y + 1) r r

7→ [` = 42], (λx .λy .x := !y + 1) ` `

7→ [` = 42], (λy .!` := y + 1) `

7→ [` = 42], ` := !` + 1 7→ [` = 42], ` := 42 + 1

7→ [` = 42], ` := 43 7→ [` = 43], ()
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Something’s missing

We didn’t give a rule for e1; e2. It’s pretty straightforward
(exercise!)

actually, e1; e2 is definable as

e1; e2 ⇐⇒ let = e1 in e2

where stands for any variable not already in use in e1, e2.

Why?

To evaluate e1; e2, we evaluate e1 for its side effects,
ignore the result, and then evaluate e2 for its value (plus
any side effects)
Evaluating let = e1 in e2 first evaluates e1, then
binds the resulting value to some variable not used in e2,
and finally evaluates e2.
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Reference semantics: observations

Notice that any subexpression can create, read or assign a
reference:

let r = ref(1) in (r := 1000; 3) + !r

This means that evaluation order really matters!

Do we get 4 or 1003 from the above?

With left-to-right order, r := 1000 is evaluated first,
then !r , so we get 1003
If we evaluated right-to-left, then !r would evaluate to 1,
before assigning r := 1000, so we would get 4

However, the small-step rules clarify that existing
constructs evaluate “as usual”, with no side-effects.
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Arrays

Arrays generalize references to allow getting and setting
by index (i.e. a reference is a one-element array)

e ::= · · · | array(e1, e2) | e1[e2] | e1[e2] := e3

τ ::= · · · | array[τ ]

array(n, init) creates an array of n elements, initialized
to init

arr [i ] gets the ith element; arr [i ] := v sets the ith
element to v

This introduces the potential problem of out-of-bounds
accesses

Typing, evaluation rules for arrays: exercise
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References and subtyping

Consider Integer <: Object, String <: Object

Suppose we allowed contravariant subtyping for Ref, i.e.
Ref[-A]

which is obviously silly: we shouldn’t expect a reference
to Object to be castable to String.

We could then do the following:

val x: Ref[Object] = new Ref(new Integer(42))

// String <: Object,

// hence Ref[Object] <: Ref[String]

x.get.length // unsound!
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References and subtyping

Consider Int <: Object, String <: Object

Suppose we allowed covariant subtyping for Ref, i.e.
Ref[+A]

We could then do the following:

val x: Ref[String] = new Ref(new String("asdf"))

def bad(y: Ref[Object]) = y.set(new Integer(42))

bad(x) // x still has type Ref[String]!

x.get.length() // unsound!

Therefore, mutable parameterized types like Ref must be
invariant (neither covariant nor contravariant)

(Java got this wrong, for built-in array types!)
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References and polymorphism [non-examinable]

A related problem: references can violate type soundness
in a language with Hindley-Milner style type inference and
let-bound polymorphism (e.g. ML, OCaml, F#)

let r = ref (fn x => x) in

r := (fn x => x + 1);

!r(true)

r initially gets inferred type ∀A.A→ A

We then assign r to be a function of type int→ int

and then apply r to a boolean!

Accepted solution: the value restriction - the right-hand
side of a polymorphic let must be a value.

(e.g., in Scala, polymorphism is only introduced via
function definitions)
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Resources

References, arrays illustrate a common resource pattern:

Memory cells (references, arrays, etc.)
Files/file handles
Database, network connections
Locks

Usage pattern: allocate/open/acquire, use,
deallocate/close/release

Key issues:

How to ensure proper use?
How to ensure eventual deallocation?
How to avoid attempted use after deallocation?
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Design choices regarding references and pointers

Some languages (notably C/C++) distinguish between
type τ and type τ∗ (“pointer to τ”), i.e. a mutable
reference

Other languages, notably Java, consider many types (e.g.
classes) to be “reference types”, i.e., all variables of that
type are really mutable (and nullable!) references.

In Scala, variables introduced by val are immutable, while
using var they can be assigned.

In Haskell, as a pure, functional language, all variables are
immutable; references and mutable state are available but
must be handled specially
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Safe allocation and use of resources

In a strongly typed language, we can ensure safe resource
use by ensuring all expressions of type ref[τ ] are properly
initialized

C/C++ does not do this: a pointer τ∗ may be
“uninitialized” (not point to an allocated τ block). Must
be initialized separately via malloc or other operations.

Java (sort of) does this: an expression of reference type τ
is a reference to an allocated τ (or null!)

Scala, Haskell don’t allow “silent” null values, and so a τ
is always an allocated structure

Moreover, a ref[τ ] is always a reference to an allocated,
mutable τ
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Safe deallocation of resources?

Unfortunately, types are not as helpful in enforcing safe
deallocation.

One problem: forgetting to deallocate (resource leaks).
Leads to poor performance or run-time failure if resources
exhausted.

Another problem: deallocating the same resource more
than once (double free), or trying to use it after it’s been
deallocated

A major reason is aliasing: copies of references to
allocated resources can propagate to unpredictable parts
of the program

Substructural typing discipline (cf. guest lecture) can help
with this, but remains an active research topic...
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Main approaches to deallocation

C/C++: explicit deallocation (free) must be done by
the programmer.

(This is very very hard to get right.)

Java, Scala, Haskell use garbage collection. It is the
runtime’s job to decide when it is safe to deallocate
resources.

This makes life much easier for the programmer, but
requires a much more sophisticated implementation, and
complicates optimization/performance tuning

Lexical scoping or exception handling works well for
ensuring deallocation in certain common cases (e.g. files,
locks, connections)

Other approaches include reference counting, regions, etc.
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Summary

We continued to explore design considerations that affect
many aspects of a language

Today:

references and mutability, in generality
interaction with subtyping and polymorphism
some observations about other forms of resources and
the “allocate/use/deallocate” pattern
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Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Overview

Final few lectures: cross-cutting language design issues

So far:

Type safety
References, arrays, resources

Today:

Evaluation strategies (by-value, by-name, by-need)
Impact on language design (particularly handling e↵ects)
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Evaluation order

We’ve noted already that some aspects of small-step
semantics seem arbitrary

For example, left-to-right or right-to-left evaluation

Consider the rules for +,⇥. There are two kinds:
computational rules that actually do something:

v1 + v2 7! v1 +N v2 v1 ⇥ v2 7! v1 ⇥N v2

and administrative rules that say how to evaluate inside
subexpressions:

e1 7! e 0
1

e1 � e2 7! e 0
1 � e2

e2 7! e 0
2

v1 � e2 7! v1 � e 0
2
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Evaluation order

We can vary the evaluation order by changing the
administrative rules.

To evaluate right-to-left:

e2 7! e 0
2

e1 � e2 7! e1 � e 0
2

e1 7! e 0
1

e1 � v2 7! e 0
1 � v2

To leave the evaluation order unspecified:

e1 7! e 0
1

e1 � e2 7! e 0
1 � e2

e2 7! e 0
2

e1 � e2 7! e1 � e 0
2

by lifting the constraint that the other side has to be a
value.
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Call-by-value

So far, function calls evaluate arguments to values before
binding them to variables

e1 7! e 0
1

e1 e2 7! e 0
1 e2

e2 7! e 0
2

v1 e2 7! v1 e 0
2 (�x . e) v 7! e[v/x ]

This evaluation strategy is called call-by-value.

Sometimes also called strict or eager

“Call-by-value” historically refers to the fact that
expressions are evaluated before being passed as
parameters

It is the default in most languages
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Example

Consider (�x .x ⇥ x) (1 + 2 ⇥ 3)

Then we can derive:

2 ⇥ 3 7! 6
1 + 2 ⇥ 3 7! 1 + 6

(�x .x ⇥ x) (1 + 2 ⇥ 3) 7! (�x .x ⇥ x) (1 + 6)

Next:
1 + 6 7! 7

(�x .x ⇥ x) (1 + 6) 7! (�x .x ⇥ x) 7

Finally:

(�x .x ⇥ x) 7 7! 7 ⇥ 7 7! 49
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Interpreting call-by-value

We evaluate subexpressions fully before substituting them for
variables:

def eval (e: Expr): Value = e match {

...

case Let(x,e1,e2) => eval(subst(e2,eval(e1),x))

...

case Lambda(x,ty,e) => Lambda(x,ty,e)

case Apply(e1,e2) => eval(e1) match {

case Lambda(x,_,e) => apply(subst(e,eval(e2),x))

}

}
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Call-by-name

Call-by-value may evaluate expressions unnecessarily
(leading to nontermination in the worst case)

(�x .42) loop 7! (�x .42) loop 7! · · ·

An alternative: substitute expressions before evaluating

(�x .42) loop 7! 42

To do this, remove second administrative rule, and
generalize the computational rule

e1 7! e 0
1

e1 e2 7! e 0
1 e2 (�x . e1) e2 7! e1[e2/x ]

This evaluation strategy is called call-by-name (the
“name” is the expression)
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Example, revisited

Consider (�x .x ⇥ x) (1 + 2 ⇥ 3)

Then in call-by-name we can derive:

(�x .x ⇥ x) (1 + 2 ⇥ 3) 7! (1 + (2 ⇥ 3)) ⇥ (1 + (2 ⇥ 3)))

The rest is standard:

(1 + (2 ⇥ 3)) ⇥ (1 + (2 ⇥ 3)) 7! (1 + 6) ⇥ (1 + (2 ⇥ 3))

7! 7 ⇥ (1 + (2 ⇥ 3))

7! 7 ⇥ (1 + 6)

7! 7 ⇥ 7 7! 49

Notice that we recompute the argument twice!
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Interpreting call-by-name

We substitute expressions for variables before evaluating.

def eval (e: Expr): Value = e match {

...

case Let(x,e1,e2 ) => eval(subst(e2,e1,x))

...

case Lambda(x,ty,e) => Lambda(x,ty,e)

case Apply(e1,e2) => eval(e1) match {

case Lambda(x,_,e) => eval(subst(e,e2,x))

}

}
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Call-by-name in Scala

In Scala, can flag an argument as being passed by name
by writing => in front of its type

Such arguments are evaluated only when needed (but
may be evaluated many times)

scala> def byName(x : => Int) = x + x

byName: (x: => Int)Int

scala> byName({ println("Hi there!"); 42})

Hi there!

Hi there!

res1: Int = 84

This can be useful; sometimes we actually want to
re-evaluate an expression (see next week’s tutorial)
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Simulating call-by-name

Using functions, we can simulate passing e : ⌧ by name in
a call-by-value language

Simply pass it as a “delayed” expression
�().e : unit ! ⌧ .

When its value is needed, apply to ().

Scala’s “by name” argument passing is basically syntactic
sugar for this (using annotations on types to decide when
to silently apply to ())
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Comparison

Call-by-value evaluates every expression at most once

... whether or not its value is needed
Performance tends to be more predictable
Side-e↵ects happen predictably

Call-by-name only evaluates an expression if its value is
needed

Can be faster (or even avoid infinite loop), if not needed
But may evaluate multiple times if needed more than
once
Reasoning about performance requires understanding
when expressions are needed
Side-e↵ects may happen multiple times or not at all!
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Best of both worlds?

A third strategy: evaluate each expression when it is
needed, but then save the result

If an expression’s value is never needed, it never gets
evaluated

If it is needed many times, it’s still only evaluated once.

This is called call-by-need (or sometimes lazy) evaluation.
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Laziness in Scala

Scala provides a lazy keyword

Variables declared lazy are not evaluated until needed

When they are evaluated, the value is memoized (that is,
we store it in case of later reuse).

scala> lazy val x = {println("Hello"); 42}

x: Int = <lazy>

scala> x + x

Hello

res0: Int = 84
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Laziness in Scala

Actually, laziness can also be emulated using references
and variant types:

class Lazy[A](a: => A) {

private var r: Either[A,() => A] = Right{() => a}

def force = r match {

case Left(a) => a

case Right(f) => {

val a = f()

r = Left(a)

a

}

}

}
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Call-by-need

The semantics of call-by-need is a little more complicated.

We want to share expressions to avoid recomputation of
needed subexpressions

We can do this using a “memo table” � : Loc ! Expr

(similar to the store we used for references)

Idea: When an expression e is bound to a variable,
replace it with a label ` bound to e in �

The labels are not regarded as values, though.
When we try to evaluate the label, look up the
expression in the store and evaluate it
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Rules for call-by-need

�, e 7! �0, e 0

�, (�x .e1) e2 7! �[` := e2], e1[`/x ]

�, let x = e1 in e2 7! �[` := e1], e2[`/x ]

�[` := v ], ` 7! �[` := v ], v

�, e 7! �0, e 0

�[` := e], ` 7! �0[` := e 0], `

When we reduce a function application or let, add
expression to the memo table and replace with label

When we encounter the label, look up its value or
evaluate it (if not yet evaluated)

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Rules for call-by-need

As with LRef , we also need to adjust all of the rules to handle
�.

�, e 7! �0, e 0

�, e1 7! �0, e 0
1

�, e1 � e2 7! �0, e 0
1 � e2

�, e2 7! �0, e 0
2

�, v1 � e2 7! �0, v1 � e 0
2

�, v1 + v2 7! �, v1 +N v2 �, v1 ⇥ v2 7! �, v1 ⇥N v2

...
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Example, revisited again

Consider (�x .x ⇥ x) (1 + 2 ⇥ 3)

Then we can derive:

[], (�x .x ⇥ x) (1 + 2 ⇥ 3) 7! [` = 1 + (2 ⇥ 3)], `⇥ `

Next, we have:

[` = 1+(2⇥3)], `⇥ ` 7! [` = 1+6], `⇥ ` 7! [` = 7], `⇥ `

Finally, we can fill in the ` labels:

[` = 7], `⇥` 7! [` = 7], 7⇥` 7! [` = 7], 7⇥7 7! [` = 7], 49

Notice that we compute the argument only once (but
only when its value is needed).
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Pure functional programming

Call-by-name/call-by-need interact badly with side-e↵ects

On the other hand, they support very strong equational
reasoning about programs

Haskell (and some other languages) are pure: they adopt
lazy evaluation, and forbid any side-e↵ects!

This has strengths and weaknesses:

(+) Easier to optimize, parallelize because side-e↵ects
are forbidden
(+) Can be faster
(-) but memoization has overhead (e.g. memory leaks)
and performance is less predictable
(-) Dealing with I/O, exceptions etc. requires major
rethink
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I/O in Haskell

Dealing with I/O and other side-e↵ects in Haskell was a
long-standing challenge

Today’s solution: use a type constructor IO a to
“encapsulate” side-e↵ecting computations

do { x <- readLn::IO Int ; print x }

123

123

Note: do-notation is also a form of comprehension

Haskell’s monads provide (equivalents of) the map and
flatMap operations
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Lazy data structures

We have (so far) assumed eager evaluation for data
structures (pairs, variants)

e.g. a pair is fully evaluated to a value, even if both
components are not needed

However, alternative (lazy) evaluation strategies can be
considered for data structures too

e.g. could consider a pair (e1, e2) to be a value; we only
evaluate e1 if it is “needed” by applying fst:

ghci> fst (42, undefined) == 42

An example: streams (see next week’s tutorial)

ghci> let ones = 1::ones

ghci> take 10 ones
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Summary

We are continuing our tour of language-design issues

Today we covered:

Call-by-value (the default)
Call-by-name
Call-by-need and lazy evaluation

Next time:

Exceptions
Control abstractions
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Exceptions Tail recursion Continuations

Overview

We have been considering several high-level aspects of
language design:

Type soundness
References
Evaluation order

Today we complete this tour and examine:

Exceptions
Tail recursion
Other control abstractions

Exceptions Tail recursion Continuations

Exceptions

In earlier lectures, we considered several approaches to
error handling

Exceptions are another popular approach (supported by
Java, C++, Scala, ML, Python, etc.)

The throw e statement raises an exception e

A try/catch block runs a statement; if an exception is
raised, control transfers to the corresponding handler

try { ... do something ... }

catch (IOException e)

{... handle exception e ...}

catch (NullPointerException e)

{... handle another exception...}
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finally and resource cleanup

What if the try block allocated some resources?

We should make sure they get deallocated!

finally clause: gets run at the end whether or not
exception is thrown

InputStream in = null;

try { in = new FileInputStream(fname);

... do something with in ... }

catch (IOException exn) {...}

finally { if(in != null)

in.close(); }

Java 7: “try-with-resources” encapsulates this pattern,
for resources implementing AutoCloseable interface
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throws clauses

In Java, potentially unhandled exceptions typically need
to be declared in the types of methods

void writeFile(String filename)

throws IOException {

InputStream in = new FileInputStream(filename);

... write to file ...

in.close();

}

This means programmers using such methods know that
certain exceptions need to be handled

Failure to handle or declare an exception is a type error!

(however, certain unchecked exceptions / errors do not
need to be declared, e.g. NullPointerException)
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Exceptions in Scala

As you might expect, Scala supports a similar mechanism:

try { ... do something ... }

catch {

case exn: IOException =>

... handle IO exception...

case exn: NullPointerException =>

... handle null pointer exception...

} finally { ... cleanup ...}

Main difference: The catch block is just a Scala pattern
match on exceptions

Scala allows pattern matching on types (via
isInstanceOf/asInstanceOf)

Also: throws clauses not required
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Exceptions for shortcutting

We can also use exceptions for “normal” computation

def product(l: List[Int]) = {

object Zero extends Throwable

def go(l: List[Int]): Int = l match {

case Nil => 1

case x::xs =>

if (x == 0) {throw Zero} else {x * go(xs)}

}

try { go(l) }

catch { case Zero => 0 }

}

potentially saving a lot of effort if the list contains 0
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Exceptions in practice

Java:

Exceptions are subclasses of java.lang.Throwable
Method types must declare (most) possible exceptions in
throws clause
compile-time error if an exception can be raised and not
caught or declared
multiple “catch” blocks; “finally” clause to allow cleanup

Scala:

doesn’t require declaring thrown exceptions: this
becomes especially painful in a higher-order language...
“catch” does pattern matching
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Modeling exceptions

We will formalize a simple model of exceptions:

e ::= · · · | raise e | e1 handle {x ⇒ e2}

Here, raise e throws an arbitrary value as an “exception”

while e1 handle {x ⇒ e2} evaluates e1 and, if an
exception is thrown during evaluation, binds the value v
to x and evaluates e.

Define LExn as LRec extended with exceptions
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Exceptions and types

Exception constructs are straightforward to typecheck:

τ ::= · · · | exn

Usually, the exn type is extensible (e.g. by subclassing)

Γ ` e : τ for LExn

Γ ` e : exn
Γ ` raise e : τ

Γ ` e1 : τ Γ, x : exn ` e2 : τ

Γ ` e1 handle {x ⇒ e2} : τ

Note: raise e can have any type! (because raise e
never returns)

The return types of e1 and e2 in handler must match.
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Interpreting exceptions

We can extend our Scala interpreter for LRec to manage
exceptions as follows:

case class ExceptionV(v: Value) extends Throwable

def eval(e: Expr): Value = e match {

...

case Raise(e: Expr) => throw (ExceptionV(eval(e)))

case Handle(e1: Expr, x: Variable, e2:Expr) =>

try {

eval(e1)

} catch (ExceptionV(v)) {

eval(subst(e2,v,x))

}

This might seem a little circular!
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Semantics of exceptions

To formalize the semantics of exceptions, we need an
auxiliary judgment e raises v

Intuitively: this says that expression e does not finish
normally but instead raises exception value v

e raises v

raise v raises v
e1 raises v

e1 ⊕ e2 raises v
e2 raises v

v1 ⊕ e2 raises v

e raises v
if e then e1 else e2 raises v · · ·

The most interesting rule is the first one; the rest are
“administrative”
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Semantics of exceptions

We can now define the small-step semantics of handle
using the following additional rules:

e 7→ e ′

e1 7→ e ′1
e1 handle {x ⇒ e2} 7→ e ′1 handle {x ⇒ e2}

v1 handle {x ⇒ e2} 7→ v1

e1 raises v

e1 handle {x ⇒ e2} 7→ e2[v/x ]

If e1 steps normally to e ′1, take that step

If e1 raises an exception v , substitute it in for x and
evaluate e2
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Tail recursion

A function call is a tail call if it is the last action of the
calling function. If every recursive call is a tail call, we say
f is tail recursive.

For example, this version of fact is not tail recursive:

def fact1(n: Int): Int =

if (n == 0) {1} else {n * (fact1(n-1))}

But this one is:

def fact2(n: Int) = {

def go(n: Int, r: Int): Int =

if (n == 0) {r} else {go(n-1,n*r)}

go(n,1)

}
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Tail recursion and efficiency

Tail recursive functions can be compiled more efficiently

because there is no more “work” to do after the recursive
call

In Scala, there is a (checked) annotation @tailrec to
mark tail-recursive functions for optimization

def fact2(n: Int) = {

@tailrec

def go(n: Int, r: Int): Int =

if (n == 0) {r} else {go(n-1,n*r)}

go(n,1)

}
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Continuations [non-examinable]

Conditionals, while-loops, exceptions, “goto” are all form
of control abstraction

Continuations are a highly general notion of control
abstraction, which can be used to implement exceptions
(and much else).

Material covered from here on is non-examinable.

just for fun!
(Depends on your definition of fun, I suppose)
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Continuations

A continuation is a function representing “the rest of the
computation”

Any function can be put in “continuation-passing form”

for example

def fact3[A](n: Int, k: Int => A): A =

if (n == 0) {k(1)}

else {fact3(n-1, {m => k (n * m)})}

This says: if n is 0, pass 1 to k

otherwise, recursively call with parameters n − 1 and
λr .k(n × r)

“when done, multiply the result by n and pass to k”
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How does this work?

def fact3[A](n: Int, k: Int => A): A =

if (n == 0) {k(1)} else {fact3(n-1, {r => k (n * r)})}

fact3(3, λx .x)

7→ fact3(2, λr1.(λx .x) (3× r1))

7→ fact3(1, λr2.(λr .(λx .x) (3× r)) (2× r2))

7→ fact3(0, λr3.(λr2.(λr1.(λx .x) (3× r1)) (2× r2)) (1× r3))

7→ (λr3.(λr2.(λr1.(λx .x) (3× r1)) (2× r2)) (1× r3)) 1

7→ (λr2.(λr1.(λx .x) (3× r1)) (2× r2)) (1× 1)

7→ (λr1.(λx .x) (3× r1)) (2× 1)

7→ (λx .x) (3× 2)

7→ 6
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Interpreting LArith using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

// Arithmetic

case Num(n) => k(NumV(n))

case Plus(e1,e2) =>

eval(e1,{case NumV(v1) =>

eval(e2,{case NumV(v2) => k(NumV(v1+v2))})})

case Times(e1,e2) =>

eval(e1,{case NumV(v1) =>

eval(e2,{case NumV(v2) => k(NumV(v1*v2))})})

...

}
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Interpreting LIf using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

...

// Booleans

case Bool(n) => k(BoolV(n))

case Eq(e1,e2) =>

eval(e1,{v1 =>

eval(e2,{v2 => k(BoolV(v1 == v2))})})

case IfThenElse(e,e1,e2) =>

eval(e,{case BoolV(v) =>

if(v) { eval(e1,k) } else { eval(e2,k) } })

...

}
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Interpreting LLet using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

...

// Let-binding

case Let(e1,x,e2) =>

eval(e1,{v =>

eval(subst(e2,v,x),k)})

...

}
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Interpreting LRec using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

...

// Functions

case Lambda(x,ty,e) => k(LambdaV(x,ty,e))

case Rec(f,x,ty1,ty2,e) => k(RecV(f,x,ty1,ty2,e))

case Apply(e1,e2) =>

eval(e1, {v1 =>

eval(e2, {v2 => v2 match {

case LambdaV(x,ty,e) => eval(subst(e,v2,x), k)

case RecV(f,x,ty1,ty2,e) =>

eval(subst(subst(e,v2,x),v1,f),k)

}})})

...

}
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Interpreting LExn using continuations

To deal with exceptions, we add a second continuation h for
handling exceptions. (Cases seen so far just pass h along.)

def eval[A](e: Expr, h: Value => A,

k: Value => A): A = e match {

...

// Exceptions

case Raise(e0) => eval(e0,h,h)

case Handle(e1,x,e2) =>

eval(e1,{v => eval(subst(e2,v,x),h,k)},k)

}

When raising an exception, we forget k and pass to h.
When handling, we install new handler using e2
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Summary

Today we completed our tour of

Type soundness
References and resource management
Evaluation order
Exceptions and control abstractions (today)

which can interact with each other and other language
features in subtle ways

Next time:

review lecture
information about exam, reading
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Overview

We’ve now covered

Basic concepts: ASTs, evaluation, typing, names, scope
Common elements of any programming language
Programming in the large: components, abstractions
Language design issues

Today:

Review of course, pointers to related reading
Information about the exam
Conclusions
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Intro & Abstract syntax

Concrete vs. Abstract Syntax

Abstract syntax trees

Abstract syntax of LArith in several languages

Structural induction over syntax trees

Reading: PFPL2 1.1; CPL 4.1, 5.4.1
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Evaluation & Interpretation

A simple interpreter for arithmetic expressions

Evaluation judgment e ⇓ v and big-step evaluation rules

Totality, uniqueness, and correctness of interpreter (via
structural induction)

Reading: PFPL2 2.1-3, 2.6, 7.1, CPL 5.4.2
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Booleans, conditionals, types

Boolean expressions, equality tests, and conditionals

Typing judgment ` e : τ

Typing rules

Type soundness and static vs. dynamic typing

Reading: PFPL2 4.1-4.2, CPL 5.4.2, 6.1, 6.2
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Variables and scope

Variables: symbols denoting other things

Substitution: replacing variables with expressions/values

Scope and binding: introducing and using variables

Free variables and α-equivalence

Impact of variables, scope and binding on evaluation and
typing (using let-binding to illustrate)

Reading: PFPL2 1.2, 3.1-3.2, CPL 4.2, 7.1
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Functions and recursion

Named (non-recursive) functions

Static vs. dynamic scope

Anonymous functions

Recursive functions

The function type, τ1 → τ2

Reading: PFPL2 8, 19.1-2; CPL 4.2, 5.4.3
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Data structures

Pairs and pair types τ1 × τ2, which combine two or more
data structures

Variant/choice types τ1 + τ2, which represent a choice
between two or more data structures

Special cases unit, empty

Reading: PFPL2 10.1, 11.1, CPL 5.4.4
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Records, variants and subtyping

Records, generating from pairs to structures with named
fields

Named variants, generalizing from binary choices to
named constructors (e.g. datatypes, case classes)

Type abbreviations and definitions

Subtyping (e.g. width subtyping, depth subtyping for
records)

Covariance and contravariance; subtyping for pair, choice,
function types

Reading: CPL 6.5; PFPL2 10.2, 11.2-3, 24.1-3
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Polymorphism and type inference

The idea of thinking of the same code as having many
different types

Parametric polymorphism: abstracting over a type
parameter (variable)

Modeling polymorphism using types ∀A.τ
High-level coverage of type inference, e.g. in Scala

[non-examinable] Hindley-Milner and let-bound
polymorphism

Reading: PFPL2 16.1; CPL 6.3-4
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Programs, modules and interfaces

“Programs” as collections of definitions (with an entry
point)

Namespaces and packages: collecting related components
together, using “dot” syntax to structure names;
importing namespaces to allow local usage

The idea of abstract data types: a type with associated
operations, with hidden implementation

Modules (e.g. Scala’s objects) and interfaces (e.g.
Scala’s traits)

What it means for a module to “implement” an interface

Reading: CPL 9, PFPL2 42.1-2, 44.1
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Objects and classes

Objects and how they differ from records or modules:
encapsulation of local state; self-reference

Classes and how they differ from interfaces; abstract
classes; dynamic dispatch

Instantiating classes to obtain objects

Inheritance of functionality between objects or classes;
multiple inheritance and its problems

Run-time type tests and coercions (isInstanceOf,
asInstanceOf)

Reading: CPL 10, 12.5, 13.1-2
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Object-oriented functional programming

Advanced OOP concepts:

inner classes, nested classes, anonymous classes/objects
Generics: Parameterized types and parametric
polymorphism; interaction with subtyping; type bounds
Traits as mixins: implementing multiple traits providing
orthogonal functionality; comparison with multiple
inheritance

Function types as interfaces

List comprehensions and map, flatMap and filter

functions

Reading: Odersky and Rompf, Unifying Functional and
Object-Oriented Programming with Scala, CACM, Vol.
57 No. 4, Pages 76-86, April 2014

Course review Exam information Conclusions

Imperative programming

LWhile: a language with statements, variables, assignment,
conditionals and loops

Interpreting LWhile using state or store

Operational semantics of LWhile

[non-examinable] Structured vs unstructured
programming

[non-examinable] Other control flow constructs: goto,
switch, break/continue

Reading: CPL 4.4, 5.1-2, 8.1
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Small-step semantics and type safety

Small-step evaluation relation e 7→ e ′, and advantages
over big-step semantics for discussing type safety

Induction on derivations

Type soundness: decoposition into preservation and
progress lemmas

Representative cases for LIf

[non-examinable] Type soundness for LRec

Reading: CPL 6.1-2, PFPL2 5.1-2, 2.4, 7.2, 6.1-2
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References and resource management

Reconciling references and mutability with a “functional”
language like LRec

Semantics and typing for references

Potential interactions with subtyping; problem with
reference / array types being covariant in e.g. Java

[non-examinable] How references + polymorphism can
violate type soundness

Resources and allocation/deallocation

Reading: PFPL2 35.1-3, CPL 5.4.5, 13.3
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Evaluation strategies

Evaluation order; varying small-step “administrative”
rules to get left-to-right, right-to-left or unspecified
operand evaluation order

Evaluation strategies for function arguments (or more
generally for expressions bound to variables):

Call-by-value / eager
Call-by-name
Call-by-need / lazy evaluation

Interactions between evaluation strategies and side-effects

Lazy data structures and pure functional programming
(cf. Haskell)

Reading: PFPL2 36.1, CPL 7.3, 8.4
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Exceptions and continuations

Exceptions, illustrated in Java and Scala (throw,
try...catch...finally)

Exceptions more formally: typing and small-step
evaluation rules

Tail recursion

[non-examinable] Continuations

Reading: CPL 8.2-3, PFPL2 29.1-3, PFPL2 30.1-2
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Reading summary

The following sections of CPL are recommended to
provide high-level explanation and background:
1, 4.1-2, 4.4, 5.4, 6.1-5, 7.1, 7.3, 8.1-4, 9, 10, 12.5,
13.1-3

The following sections of PFPL2 are recommended to
complement the formal content of the course:
1, 2, 3.1-2, 4.1-2, 5.1-2, 6.1-2, 7.1-2, 8, 19.1-2, 10.1-2,
11.1-3, 16.1, 24.1-3, 35.1-3, 36.1, 42.1-2, 44.1

(warning: chapter references for 1st edition differ!)

In general, exam questions should be answerable using
ideas introduced/explained in lectures or tutorials

(please ask, if something mentioned in lecture slides is
unclear and not explained in associated readings)
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Exam Information
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Exam format

Written exam, 2 hours

Three (multi-part) questions

Answer Question 1 + EITHER Question 2 or 3

Closed-book (no notes, etc.), but...

Exam will not be about memorizing inference rules —
any rules needed to construct derivations will be provided
in a supplement

Check University exam schedule!

Exam in December ⇐⇒ you are a visiting student
AND only here for semester 1
Exam in April/May ⇐⇒ you are here for full academic
year
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Expectations

Several typical kinds of questions...

Show how to use / apply some technical content of the
course (typing rules, evaluation, ) — possibly in a slightly
different setting than in lectures/assignments

Define concepts; explain differences/strengths/weaknesses
of differerent ideas in PL design

Show how to extrapolate or extend concepts or technical
ideas covered in lectures (possibly in ways covered in
more detail in reading or tutorials but not in lectures)

Explain and perform simple examples of inductive proofs
(no more complex than those covered in lectures)
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Sample exam

A sample exam is available now on course web page

Format: same as real exam

Questions have not gone through same process, so:

There may be errors/typos (hopefully not on real exam)
The difficulty level may not be calibrated to the real
exam (though I have tried to make it comparable)

In particular: just because a topic is covered/not covered
on the sample exam does NOT tell you it will be / will
not be covered on the real exam!

There will be a exam review session on Friday
December 2 at 2:10pm (usual lecture time/place, 7 Bristo
Square LT1)
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Conclusions
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What didn’t we cover?

Lots! (course is already dense as it is)

Scala: implicits, richer pattern matching, concurrency, . . .

More generally:

language-support for concurrent programming
(synchronized, threads, locks, etc.)
language support for other computational models
(databases, parallel CPU, GPU, etc.)
Haskell-style type classes/overloading
Logic programming
Program verification / theorem proving
Analysis and optimisation
Implementation and compilation of modern languages
Virtual machines
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Other relevant courses

There is a lot more to Programming Languages than we
can cover in just one course...

The following UG4 courses cover more advanced topics
related to programming languages:

Advances in Programming Languages
Types and Semantics for Programming Languages
Secure Programming
Parallel Programming Languages and Systems
Compiler Optimisation
Formal Verification

Many potential supervisors for PL-related UG4, MSc,
PhD projects in Informatics — ask if interested!
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Other programming languages resources

Scottish Programming Languages Seminar,
http://www.dcs.gla.ac.uk/research/spls/

EdLambda, Edinburgh’s mostly functional programming
meetup, http://www.edlambda.co.uk

Informatics PL Interest Group,
http://wcms.inf.ed.ac.uk/lfcs/research/groups-and-
projects/pl/programming-languages-interest-group

Major conferences: ICFP, POPL, PLDI, OOPSLA, ESOP,
CC

Major journals: ACM TOPLAS, Journal of Functional
Programming
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A final word

This has been the second time of teaching this course
Elements of Programming Languages

> 70 students registered last year, > 40 this year

I hope you’ve enjoyed the course! I did, though there are
still some things that probably need work...

Please do provide feedback on the course (both what
worked and what didn’t)

Thanks in advance on behalf of future EPL students!


