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Today's Session

→ Two hours (but longer if you like)

→ Plan: Few words to start us off, then questions from you

→ I have slides working through two types of questions:

→ “Is this substitution correct?”

→ “Is this system sound?”

→ …but I’ve prepared all three exams, so we can go through any of

them on the board
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Exam Information

→ Your exam:

→ Time: Tuesday, 16th May 2017

→ Location: Patersons Land - 1.26 (Holyrood)

→ (Be sure to check closer to the time – these sometimes

change!)

→ Exam format:

→ Two hours

→ Question 1 is compulsory, then you have a choice between

questions 2 and 3.

→ Revision Exercises:

→ Three papers:

→ Mock exam (on EPL course page)

→ 2015/16 exam

→ 2015/16 resit exam

→ Tutorial questions
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15/16 Resit Exam, Question 1(b)

Consider the following substitutions:

→ (λx .x y)[x/y ] = λz .z x

→ (λx .λy .(x , y , z))[(y , z)/x ] = λx .λy .((y , z), y , z)

→ (λx .x + ((λy .y) z))[y/z ] = λx .x + ((λy .y) y)

→ (λx .x + ((λy .y) z))[x/z ] = λx .x + ((λy .y) x )

For each one, explain whether the substitution has been performed

correctly or not. If not, give the correct answer for the right-hand

side.

[8 marks]
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15/16 Resit Exam, Question 1(b)

(λx .x y)[x/y ] = λz .z x

This is correct.

→ Substituting x for y naïvely would result in λx .x x . Here, x

would be captured by the λx binder, changing the meaning of

the program.

→ Instead, it is always safe to perform substitution by choosing

fresh variables for the binders, and then performing the

substitution:

→ (λz .z y)[x/y ] = (λz .z x )

5



15/16 Resit Exam, Question 1(b)

(λx .x y)[x/y ] = λz .z x

This is correct.

→ Substituting x for y naïvely would result in λx .x x . Here, x

would be captured by the λx binder, changing the meaning of

the program.

→ Instead, it is always safe to perform substitution by choosing

fresh variables for the binders, and then performing the

substitution:

→ (λz .z y)[x/y ] = (λz .z x )

5



15/16 Resit Exam, Question 1(b)

(λx .λy .(x , y , z))[(y , z)/x ] = λx .λy .((y , z), y , z)

→ This is incorrect.

→ Whereas the y in (y , z)was free before the substitution, y has

been captured by the λy afterwards.

→ To correct the substitution, freshen the binders beforehand:

(λa.λb.(a, b, z))[(y , z)/x ] = λa.λb.(a, b, z)
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15/16 Resit Exam, Question 1(b)

(λx .x + ((λy .y) z))[y/z ] = λx .x + ((λy .y) y)

→ This is correct.

→ z is not in the scope f the λy binder, so y is not captured when

it is substituted.
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15/16 Resit Exam, Question 1(b)

(λx .x + ((λy .y) z))[x/z ] = λx .x + ((λy .y) x )

→ This is incorrect.

→ z is in the scope of λx before the substitution, so x is captured

by the binder.

→ As ever, this can be solved by freshening the binder before

substituting:

(λa.a + ((λy .y) z)[x/z ] = λa.a + ((λy .y) x )
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15/16 Resit Paper: 2(d)

“Type soundness is often proved using two properties, called

preservation and progress”. Define the preservation property.

→ Preservation: Typing is preserved under reduction.

→ More formally, if Γ ` e : τ and e 7→ e ′, then Γ ` e ′ : τ .

→ Progress: A well-typed term is either a value, or can take a

reduction step (evaluation doesn’t get “stuck”)

→ More formally, if Γ ` e : τ , then either e is a value v , or

there exists some e ′ such that e 7→ e ′.

→ Soundness: A system is sound if it satisfies preservation and

progress.

These seem to come up a lot – they’re worth knowing!
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15/16 Resit Paper: 2(e)

Consider the following rules which we might add to handle random

number generation to a language that already has basic arithmetic:

e 7→ e ′

e 7→ e′

randInt(e) 7→ randInt(e′)

0 ≤ n < v

randInt(v) 7→ n

v ≤ 0

randInt(v) 7→ 0

Γ ` e : τ

Γ ` e : int

Γ ` randInt(e) : int

Is this system sound? Briefly explain why or why not.
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15/16 Resit Paper: 2(e)

e 7→ e ′

e 7→ e′

randInt(e) 7→ randInt(e′)

0 ≤ n < v

randInt(v) 7→ n

v ≤ 0

randInt(v) 7→ 0

Γ ` e : τ

Γ ` e : int

Γ ` randInt(e) : int

Does the system satisfy preservation? If something reduces, does it

have the same type?

→ Yes: the type is int before and after reduction.

Does the system satisfy progress? Can we always reduce?

→ Yes: if randInt is evaluating a value, then all values accounted

for by the last two rules. If evaluating a subexpression, we can

assume it takes a step, and thus conclude with the first rule.
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15/16 Resit Paper: 2(e)

e 7→ e ′

e 7→ e′

randInt(e) 7→ randInt(e′)

0 ≤ n < v

randInt(v) 7→ n

v ≤ 0

randInt(v) 7→ 0

Γ ` e : τ

Γ ` e : int

Γ ` randInt(e) : int

How would we prove this formally?

→ Preservation: by induction on e 7→ e ′.

→ Progress: by induction on Γ ` e : τ .
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15/16 Paper: Question 2(c)

e 7→ e ′

e1 7→ e′1

e1 ÷ e2 7→ e′1 ÷ e2

e2 7→ e′2

v1 ÷ e2 7→ v1 ÷ e′2

v2 6= 0

v1 ÷ v2 7→ fdiv(v1, v2)

Γ ` e : τ

c is a floating-point constant

Γ ` c : float

Γ ` e1 : float Γ ` e2 : float

Γ ` e1 ÷ e2 : float

Is this system sound?

→ No.

→ Preservation holds: if we take a reduction step, we still end up

with a float.

→ Progress does not hold: we cannot reduce v1 ÷ 0 since no rules

match, yet v1 ÷ 0 is not a value.
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