EPL Exam Review Session

Simon Fowler

University of Edinburgh

April 26, 2017

Today's Session

\rightarrow Two hours (but longer if you like)
\rightarrow Plan: Few words to start us off, then questions from you
\rightarrow I have slides working through two types of questions:
\rightarrow "Is this substitution correct?"
\rightarrow "Is this system sound?"
\rightarrow...but l've prepared all three exams, so we can go through any of them on the board

Exam Information

\rightarrow Your exam:
\rightarrow Time: Tuesday, 16th May 2017
\rightarrow Location: Patersons Land - 1.26 (Holyrood)
\rightarrow (Be sure to check closer to the time - these sometimes change!)
\rightarrow Exam format:
\rightarrow Two hours
\rightarrow Question 1 is compulsory, then you have a choice between questions 2 and 3.
\rightarrow Revision Exercises:
\rightarrow Three papers:
\rightarrow Mock exam (on EPL course page)
\rightarrow 2015/16 exam
\rightarrow 2015/16 resit exam
\rightarrow Tutorial questions

15/16 Resit Exam, Question 1(b)

Consider the following substitutions:

$$
\begin{aligned}
& \rightarrow(\lambda x \cdot x y)[x / y]=\lambda z \cdot z x \\
& \rightarrow(\lambda x \cdot \lambda y \cdot(x, y, z))[(y, z) / x]=\lambda x \cdot \lambda y \cdot((y, z), y, z) \\
& \rightarrow(\lambda x \cdot x+((\lambda y \cdot y) z))[y / z]=\lambda x \cdot x+((\lambda y \cdot y) y) \\
& \rightarrow(\lambda x \cdot x+((\lambda y \cdot y) z))[x / z]=\lambda x \cdot x+((\lambda y \cdot y) x)
\end{aligned}
$$

For each one, explain whether the substitution has been performed correctly or not. If not, give the correct answer for the right-hand side.
[8 marks]

15/16 Resit Exam, Question 1(b)

$$
(\lambda x \cdot x y)[x / y]=\lambda z . z x
$$

15/16 Resit Exam, Question 1(b)

$$
(\lambda x . x y)[x / y]=\lambda z . z x
$$

This is correct.
\rightarrow Substituting x for y naïvely would result in $\lambda x . x x$. Here, x would be captured by the λx binder, changing the meaning of the program.
\rightarrow Instead, it is always safe to perform substitution by choosing fresh variables for the binders, and then performing the substitution:

$$
\rightarrow(\lambda z . z y)[x / y]=(\lambda z . z x)
$$

15/16 Resit Exam, Question 1(b)
$(\lambda x \cdot \lambda y \cdot(x, y, z))[(y, z) / x]=\lambda x \cdot \lambda y \cdot((y, z), y, z)$

15/16 Resit Exam, Question 1(b)

$$
(\lambda x \cdot \lambda y \cdot(x, y, z))[(y, z) / x]=\lambda x \cdot \lambda y \cdot((y, z), y, z)
$$

\rightarrow This is incorrect.
\rightarrow Whereas the y in (y, z) was free before the substitution, y has been captured by the λy afterwards.
\rightarrow To correct the substitution, freshen the binders beforehand:

$$
(\lambda a \cdot \lambda b \cdot(a, b, z))[(y, z) / x]=\lambda a \cdot \lambda b \cdot(a, b, z)
$$

15/16 Resit Exam, Question 1(b)
$(\lambda x \cdot x+((\lambda y \cdot y) z))[y / z]=\lambda x \cdot x+((\lambda y \cdot y) y)$

15/16 Resit Exam, Question 1(b)

$$
(\lambda x \cdot x+((\lambda y \cdot y) z))[y / z]=\lambda x \cdot x+((\lambda y \cdot y) y)
$$

\rightarrow This is correct.
$\rightarrow z$ is not in the scope f the λy binder, so y is not captured when it is substituted.

15/16 Resit Exam, Question 1(b)

$$
(\lambda x \cdot x+((\lambda y \cdot y) z))[x / z]=\lambda x \cdot x+((\lambda y \cdot y) x)
$$

\rightarrow This is incorrect.
$\rightarrow z$ is in the scope of λx before the substitution, so x is captured by the binder.
\rightarrow As ever, this can be solved by freshening the binder before substituting:

$$
(\lambda a \cdot a+((\lambda y \cdot y) z)[x / z]=\lambda a \cdot a+((\lambda y \cdot y) x)
$$

15/16 Resit Paper: 2(d)

"Type soundness is often proved using two properties, called preservation and progress". Define the preservation property.

15/16 Resit Paper: 2(d)

"Type soundness is often proved using two properties, called preservation and progress". Define the preservation property.
\rightarrow Preservation: Typing is preserved under reduction.
\rightarrow More formally, if $\Gamma \vdash e: \tau$ and $e \mapsto e^{\prime}$, then $\Gamma \vdash e^{\prime}: \tau$.
\rightarrow Progress: A well-typed term is either a value, or can take a reduction step (evaluation doesn't get "stuck")
\rightarrow More formally, if $\Gamma \vdash e: \tau$, then either e is a value v, or there exists some e^{\prime} such that $e \mapsto e^{\prime}$.
\rightarrow Soundness: A system is sound if it satisfies preservation and progress.

These seem to come up a lot - they're worth knowing!

15/16 Resit Paper: 2(e)

Consider the following rules which we might add to handle random number generation to a language that already has basic arithmetic:

$$
e \mapsto e^{\prime}
$$

$$
\frac{e \mapsto e^{\prime}}{\operatorname{randInt}(e) \mapsto \operatorname{randInt}\left(e^{\prime}\right)} \quad \frac{0 \leq n<v}{\operatorname{randInt}(v) \mapsto n} \quad \frac{v \leq 0}{\operatorname{randInt}(v) \mapsto 0}
$$

$$
\Gamma \vdash e: \tau
$$

$$
\frac{\Gamma \vdash e: \text { int }}{\Gamma \vdash \operatorname{randInt}(e): \text { int }}
$$

Is this system sound? Briefly explain why or why not.

15/16 Resit Paper: 2(e)
$\frac{e \mapsto e^{\prime}}{\operatorname{randInt}(e) \mapsto \operatorname{randInt}\left(e^{\prime}\right)} \quad \frac{0 \leq n<v}{\operatorname{randInt}(v) \mapsto n} \quad \frac{v \leq 0}{\operatorname{randInt}(v) \mapsto 0}$

$$
\Gamma \vdash e: \tau
$$

$$
\frac{\Gamma \vdash e: \operatorname{int}}{\Gamma \vdash \operatorname{randInt}(e): \mathrm{int}}
$$

Does the system satisfy preservation? If something reduces, does it have the same type?
\rightarrow Yes: the type is int before and after reduction.
Does the system satisfy progress? Can we always reduce?
\rightarrow Yes: if randInt is evaluating a value, then all values accounted for by the last two rules. If evaluating a subexpression, we can assume it takes a step, and thus conclude with the first rule.

15/16 Resit Paper: 2(e)

$\frac{e \mapsto e^{\prime}}{\operatorname{randInt}(e) \mapsto \operatorname{randInt}\left(e^{\prime}\right)} \quad \frac{0 \leq n<v}{\operatorname{randInt}(v) \mapsto}$
$\frac{\Gamma \vdash e: \operatorname{int}}{\Gamma \vdash \operatorname{randInt}(e): \mathrm{int}}$

How would we prove this formally?
\rightarrow Preservation: by induction on $e \mapsto e^{\prime}$.
\rightarrow Progress: by induction on $\Gamma \vdash e: \tau$.

15/16 Paper: Question 2(c)

$$
\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \div e_{2} \mapsto e_{1}^{\prime} \div e_{2}} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{v_{1} \div e_{2} \mapsto v_{1} \div e_{2}^{\prime}} \quad \frac{v_{2} \neq 0}{v_{1} \div v_{2} \mapsto \operatorname{div}\left(v_{1}, v_{2}\right)}
$$

$$
\Gamma \vdash e: \tau
$$

c is a floating-point constant
$\Gamma \vdash c:$ float

Is this system sound?

15/16 Paper: Question 2(c)

$\boxed{e \mapsto e^{\prime}}$
$\frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1} \div e_{2} \mapsto e_{1}^{\prime} \div e_{2}} \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{v_{1} \div e_{2} \mapsto v_{1} \div e_{2}^{\prime}} \quad \frac{v_{2} \neq 0}{v_{1} \div v_{2} \mapsto f \operatorname{div}\left(v_{1}, v_{2}\right)}$
$\frac{c \text { is a floating-point constant }}{\Gamma \vdash c: \text { float }} \quad \frac{\Gamma \vdash e_{1}: \text { float } \Gamma \vdash e_{2}: \text { float }}{\Gamma \vdash e_{1} \div e_{2}: \text { float }}$

Is this system sound?
\rightarrow No.
\rightarrow Preservation holds: if we take a reduction step, we still end up with a float.
\rightarrow Progress does not hold: we cannot reduce $v_{1} \div 0$ since no rules match, yet $v_{1} \div 0$ is not a value.

