Elements of Programming Languages
Assignment 3: Turtle Graphics
Version 1.5 (last updated November 23)
Due: November 23, 4pm

November 23, 2016

1 Introduction

Turtle Graphics' is an educational system used to teach introductory programming. In Turtle
Graphics systems, a turtle can be moved around a canvas given commands written in some
domain-specific language (generally a dialect of LOGO).

A domain-specific language (DSL) is a programming language which is specialised to some prob-
lem domain. DSLs are ubiquitous: perhaps the best-known example is SQL for constructing
database queries, but the functional approach to implementing DSLs has seen much use in indus-
try, in particular for financial modellingz.

In this assignment, we will investigate two ways of implementing a domain specific language
for Turtle Graphics. The first involves implementing an embedded domain specific language (or
EDSL), where a DSL is embedded within some host language, and can therefore make use of the
syntax, semantics, flow control, and binding structures of the host language.

The second involves implementing a standalone DSL, A| ogo. Implementing a standalone DSL
means that the language constructs must be implemented from scratch, but the language designer
has more control over features such as the syntax, evaluation strategy, and type system.

This assignment is due November 23, at 4pm.

Please read over this handout carefully and look over the code before beginning work, as some of
your questions may be answered later. Please let us know if there are any apparent errors or bugs.
We will try to update this handout to fix any major problems and such updates will be announced
to the course mailing list. The handout is versioned and the most recent version should always
be available from the course web page.

2 Constructs in Turtle Graphics

The idea behind Turtle Graphics is to move a turtle around the screen, which may draw a line as
it moves between two points.

Figure 1 shows a simple A| ogo program to draw a square. The setCol construct sets the colour of
the line to be drawn by the turtle; forward moves the turtle forwards by a given number of units,
and right rotates the turtle by a given number of degrees.

Thttps://en.wikipedia.org/wiki/Turtle_graphics
25ee http://www.timphilipwilliams.com/slides/HaskellAtBarclays.pdf and http://www.dmst.aueb.gr/dds/pubs/jrnl/
2008- JFP-ExoticTrades/html/FSNBOS. pdf

https://en.wikipedia.org/wiki/Turtle_graphics
http://www.timphilipwilliams.com/slides/HaskellAtBarclays.pdf
http://www.dmst.aueb.gr/dds/pubs/jrnl/2008-JFP-ExoticTrades/html/FSNB08.pdf
http://www.dmst.aueb.gr/dds/pubs/jrnl/2008-JFP-ExoticTrades/html/FSNB08.pdf

setCol Red;
forward 120;
right 90;
setCol Green;
forward 120;
right 90;
setCol Blue;
forward 120;
right 90;
forward 120

SOOI UI B WN -

—_

(a) ALoGgo program (b) Output Image

Figure 1: Drawing a Square with A ogo

setCol Red;
forward 120;
right 90;
penUp;
setCol Green;
forward 120;
penDown;
right 90;
setCol Blue;
forward 120;
right 90;
forward 120

O XUk WN -

—_
(e}

— =
N =

(b) Output Image
(a) ALoGo program

Figure 2: Drawing a Square with A| ogo, with the pen up for one side

It may be the case that we wish to move the turtle without drawing a line. To handle this, we
have two constructs penUp and penDown. Intuitively, if the pen is down, then a line will be drawn
whenever the turtle moves, whereas if the pen is up, the turtle will move but will not draw a line.
Figure 2 shows a similar program, but with the pen up when drawing the top side of the square.

Of course, this alone is rather uninteresting! Surprisingly, given variables, recursion, and looping,
we can quickly make some more interesting graphics. Figure 3 shows a simple fractal, where
squares are drawn recursively within squares. You do not need to understand the code in depth—
we will introduce the language constructs in more detail in Section 6—but it is useful to see what
can be done! We include several in the examples/ directory, and encourage you to explore some
ALogo programs of your own.

Concretely, the turtle-specific constructs are as follows:
penUp lifts the pen so that drawing no longer takes place.
penDown lowers the pen so that drawing takes place.
forward n moves the turtle forward by n units.

backward n moves the turtle forward by n units.

left n rotates the turtle anticlockwise by n degrees.

right nn rotates the turtle clockwise by n degrees.

setCol ¢ sets the colour of the lines that will be drawn by the turtle, where c is one of Red, Green,
Blue, or Pink.

NUl b WIN -

let colList = Red::Green::Blue::Pink::([]: color) in
let rec drawFractal(p: (int * int)): unit = — . T
let (length, depth) = p in E—J M ET E':g | F
if (depth == 0) then ()
else 2l Bd Ed I o
9 fd 9 | Eq—g‘

let counterRef = ref 0 in

randCol collList;

while (!counterRef < 4) {
forward length;

—_
SOOI UILk WN -

right 90; qOE : Erq ’
h AEE
11 drawFractal((length / 3), (depth - 1));
12 counterRef := (!counterRef + 1) BB o E e
13 } in o e I+ W A
14 |drawFractal((360, 5))

(b) Output Image

(a) ALogo program

Figure 3: Drawing a Square Fractal with A| ggo

randCol cs sets the colour of the lines drawn by the turtle to a colour randomly selected from a
list cs.

3 Included Code: a Simple Graphics Library

trait GraphicsCanvasTrait {
def drawLine(x0: Integer, y0: Integer, x1: Integer, yl: Integer): Unit
def setLineColor(col: java.awt.Color): Unit
def drawTurtle(x: Integer, y: Integer, angle: Integer): Unit
def saveToFile(filename: String): Unit

}

To help you get started, we provide GraphicsCanvas.scala, which is a simple graphics library to
wrap around Java’s Graphics2D library. You should not need to use any of the Java graphics li-
braries directly. The operations are as follows:

e drawLine(x0: Integer, y@: Integer, x1: Integer, yl: Integer): Unit draws a line from the
point with co-ordinates (x0,y0) to the point with co-ordinates (x1,y1).

e setLineColor(col: java.awt.Color) sets the colour of subsequent lines that are drawn to the
canvas.

e drawTurtle(x: Integer, y: Integer, angle: Integer): Unit draws a turtle at co-ordinates (X,y),
rotated by angle degrees clockwise.

e saveToFile(filename: String): Unit saves the contents of the canvas as a PNG file, at a path
given by filename.

3.1 Co-ordinate System

The co-ordinate system begins with (0,0) in the top-left corner of the canvas. Co-ordinates are
integer values, where each integer refers to a pixel.

Figure 4 shows example co-ordinates for a canvas of size 100 x 200. Note that negative co-
ordinates are not valid. The turtle should start in the middle of the canvas (the point (50,100)
in this example).

(0,0) (100,0)

(50, 100)

(0,200) (100,200)

Figure 4: Co-ordinate System

import Assignment3.GraphicsCanvas._
val w = 200
val h = 200

val canvas = new GraphicsCanvas(w, h)
canvas.setlLineColor(java.awt.Color.RED)
canvas.drawLine(0, 0, w, h)

NON Ok WN -

canvas.saveToFile("diag.png")

(b) Resulting image
(a) Code to draw a diagonal line on a canvas

Figure 5: Drawing on a GraphicsCanvas

3.2 Basic Usage
To create a new GraphicsCanvas instance, simply call the constructor with two parameters stating
the width and height of the canvas. As an example, the following code:

e Creates a new 200 x 200px canvas (lines 2-4)

e Sets the colour of future lines to red (line 5)

e Draws a diagonal line from the top-left corner to the bottom-right corner (line 6)

e Saves the result to the file diag.png (line 7)

Note that the operations are all side-effecting and return the unit value.

4 Getting started

Assn3.zip contains a number of starting files; use the unzip command to extract them. We provide
the following Scala files.

e GraphicsCanvas.scala, giving an implementation of the graphics canvas object. You should
not need to change this file.

e TurtleEDSL.scala, containing the supporting code and template for the Turtle EDSL.

e TurtleStandalone.scala, containing the supporting code and template for the standalone im-
plementation of A| oGo-

We include several example programs. Some are defined using the EDSL approach in TurtleEDSL.scala,
and run_edsl.sh will run these examples and generate PNG output. Others are provided as files
for use with the standalone DSL, and can be run using run_standalone.sh.

We also provide several scripts (which should work on a DICE, Linux or MacOS system):

e compile_edsl.sh compiles the EDSL code

e compile_standalone.sh compiles the standalone code

e compile.sh compiles everything

e run_edsl.sh runs the EDSL code

e run_standalone.sh runs the standalone interpreter (on a file)

If you are using a non-DICE system, such as Windows, these scripts may not work, but you can
look at the contents to work out what you need to do instead.

Finally, we provide two JAR files that contain a sample solutions called Turt1eEDSL. jar and TurtleStandalone. jar.
You can run them as follows:

$ scala TurtleEDSL.jar # runs the EDSL on some examples
$ scala TurtleStandalone.jar <filename> # runs the interpreter on a file

4.1 Objectives

The rest of this handout defines exercises for you to complete, building on the partial implemen-
tation in the provided files. You may add your own function definitions or other code, but please
use the existing definitions/types for the functions we ask you to write in the exercises, to sim-
plify automated testing we may do. You should not need to change any existing code other than
filling in definitions of functions as stated in the exercises below.

Your solutions may make use of Scala library operations, such as the list and list map operations
that have been covered in previous assignments. Some specific pointers to library primitives such
as for random number generation are mentioned later.

This assignment relies on material covered up to Lecture 14 (November 15). The two parts of
this assignment are independent and can be attempted in either order.

This assignment is graded on a scale of 25 points, and amounts to 25% of your final grade for this
course. Your submissions will be marked and returned with feedback within 2 weeks if they are
received by the due date.

Unlike the other two assignments, which were for feedback only, you must work on this as-
signment individually and not with others, in accordance with University policy on academic
conduct. Please see the course web page for more information on this policy.

Submission instructions You should submit a single ZIP file, called Assn3.zip, with the missing
code in the two main Scala files filled in as specified in the exercises in the rest of this handout. To
submit, use the following DICE commands:

$ zip Assn3.zip TurtleEDSL.scala TurtleStandalone.scala
$ submit epl 3 Assn3.zip

The submission deadline is 4pm on November 23.

5 Part1: An Embedded Domain-Specific Language

In this section, you will implement Turtle Graphics as an embedded domain-specific language,
using Scala as the host language. Embedded domain-specific languages allow the syntax and
semantics to be “borrowed” from the host language, meaning that they do not need to be imple-
mented separately.

The EDSL is contained within TurtleEDSL. scala.

OO XTI U WN -

N I R e e R e
OOV OOk WN =

5.1 Compiling and Running the EDSL

Compiling the DSL The ./compile_edsl.sh script will compile the DSL, as well as GraphicsCanvas
if required.

Running the DSL The TurtleEDSL.scala file contains a definition val toRun = List(...), contain-
ing a list of (TurtleGraphics, Filename) pairs. To run the file, run ./run_edsl.sh, or alternatively:

scala -cp . Assignment3.TurtleEDSL.Assignment3Embedded
This will execute all entries in the toRun list and save them to their corresponding filenames.

If you wish to test the functions individually from the prompt, you can do as follows:

scala -cp .
scala> :load TurtleEDSL.scala
scala> import Assignment3Embedded._

Note that you might get an illegal start of definition error when Scala comes across the pack-
age name: this can safely be ignored.

The TurtleeDsL file includes an object Testing that “implements” TurtleDSL by printing a message to
the terminal whenever one of its methods is called. This may be helpful for testing your solution
to Exercise 1 below. Initially, the code contains these lines:

import Testing._
// import TurtleDSLImpl._

You should comment out the first line and uncomment the second when you are ready to test
your solution to Exercise 2.

5.2 EDSL Definition

The interface that you will implement is as follows:

trait TurtleDSL {
type TurtleGraphics
val empty: TurtleGraphics
def append(tgl: TurtleGraphics, tg2: TurtleGraphics): TurtleGraphics
def penUp(): TurtleGraphics
def penDown(): TurtleGraphics
def forward(distance: Integer): TurtleGraphics
def backward(distance: Integer): TurtleGraphics
def right(amount: Integer): TurtleGraphics
def left(amount: Integer): TurtleGraphics
def setColor(color: Color): TurtleGraphics
def setRandomColor(cols: List[Color]): TurtleGraphics
def calculateAngleDiff(angle: Integer, diff: Integer): Integer
def calculateNewCoords(x0: Integer, yO: Integer, angle: Integer,
distance: Integer): (Integer, Integer)
def draw(tg: TurtleGraphics, width: Integer,
height: Integer): GraphicsCanvas
def saveToFile(tg: TurtleGraphics, width: Integer,
height: Integer, filename: String): Unit

Here, TurtleGraphics is an abstract type which you will have to define in your implementation.
The constructs are as follows:

e empty: TurtleGraphics an operation which does nothing.

e append(tgl: TurtleGraphics, tg2: TurtleGraphics): TurtleGraphics an operation which firstly
performs tgl, and then performs tg2.

e penUp(): TurtleGraphics: an operation which raises the pen, meaning that lines will not be
drawn when the turtle moves.

e penUp(): TurtleGraphics: an operation which lowers the pen, meaning that lines will be
drawn when the turtle moves.

e forward(distance: Integer): TurtleGraphics: an operation which moves the turtle forward
by distance pixels

e backward(distance: Integer): TurtleGraphics: an operation which moves the turtle backward
by distance pixels

e right(amount: Integer): TurtleGraphics: an operation which rotates the turtle right by amount
degrees. Note that the angle is calculated modulo 360 deg, so right(5) with a current angle
of 359 will result in an angle of 4.

e left(amount: Integer): TurtleGraphics: an operation which rotates the turtle left by amount
degrees. Again, the angle is calculated modulo 360 deg, so left(5) with a current angle of 4
will result in an angle of 359.

e setColor(color: java.awt.Color): TurtleGraphics: an operation which sets the colour of sub-
sequent lines to be color.

® setRandomColor(cols: List[java.awt.Color]): TurtleGraphics: an operation which sets the cur-
rent line colour to a random colour from cols. Fails using sys.error if cols is empty.

e def calculateAngleDiff(angle: Integer, diff: Integer): Integer: Calculates an angle differ-
ence modulo 360. So: calculateAnglediff(359,5) = 4, and calculateAngleDiff(4, —5) = 359.

® calculateNewCoords(x0: Integer, yO: Integer, angle: Integer,
distance: Integer): (Integer, Integer): takes the current x and y co-ordinates (xg and yy),
the current angle, and the distance to move forward. Returns a pair of the co-ordinates after
the move has taken place.

e draw(tg: TurtleGraphics, width: Integer, height:Integer): GraphicsCanvas: takesa TurtleGraphics
command, runs it on a canvas of width width px and height height px, and returns the re-
sulting GraphicsCanvas.

e saveToFile(tg: TurtleGraphics, width: Integer, height: Integer,filename: String): takes a
TurtleGraphics command, runs it on a canvas of width width px and height height px, and
saves the resulting canvas as a PNG file to the location given by filename, returning Unit.

For example, using the DSL, we can write a program to draw a square as follows:

NUl b WIN -

def square() = {
forward(100) <> right(90) <>
forward(100) <> right(90) <>
forward(100) <> right(90) <>
forward(100) <> right(90)

Note that we can sequence operations using the <> infix operator. (There is some magic Scala code
in the trait to support this, which you do not need to understand and should not change.)

The Turtle DSL trait contains a few operations that can be defined once and for all as part of
the trait, either because they are definable in terms of other operations (e.g. backward, left), or
because they are helper functions (e.g. calculateAngleDiff, calculateNewCoords, and saveToFile)
that do not depend on the implementation type TurtleGraphics. We have filled in one example.
namely saveToFile.

Exercise 1. Implement the operations backward, left, calculateAngleDiff, and calculateNewCoords in
the trait TurtleDSL.

[2 marks]

Finally, you are to define an implementation of the TurtleDsL trait. The rest of this section gives
additional suggestions regarding how to proceed.

Exercise 2. Define an object TurtleDSLImpl extending TurtleDSL that provides definitions for all of the
remaining components.

[8 marks]

5.3 State and Geometry

In implementing the EDSL, you will need to keep track of several properties: in particular, the
canvas to be drawn on, the current co-ordinates of the turtle, whether the pen is up or down, and
the angle of the turtle. In what follows, we assume that the angles are measured clockwise relative
to the y-axis, so that angle 0 corresponds to the turtle pointing “up”. (This choice is somewhat
arbitrary.)

(x0,¥1) (x1,¥1)

dist

(x0,%0) (x1,Y0)

Figure 6: Calculating destination co-ordinates from source co-ordinates

You will also notice that drawLine requires two pairs of co-ordinates: one which will be the position
before the turtle moves, and one which will be the position after the turtle moves. In order to
calculate this, you will need to calculate the destination co-ordinates from the initial co-ordinates,
as shown in Figure 4. Given initial co-ordinates (xo,1); a distance dist, and an angle 6, the
destination co-ordinates (x1,y7) can be calculated as follows:

e x1 = xq + (dist x sin(0))
o y1 = yo — (dist x cos(0))

Important: the math.sin(angle: Double) and math.cos(angle: Double) functions take an angle in
radians! Ensure that you convert your angle to radians using math. toRadians (angle) before passing
them to the trigonometric functions.

54 Randomness

Scala (like Java) has a built-in random number generator library. In the provided code, the fol-
lowing line

val rand = new Random(System.currentTimeMillis())

initializes a random number generator called rand, which you should use to implement the setRandomColor
operation. The function rand.nextInt(n:Integer):Integer chooses a random number between 0
and n — 1.

SOOI UlLk WN -

—_ =
—_

12
13
14
15
16
17
18
19
20
21
22

OO XTI U WN -

e e e
W N =

5.5 EDSL Implementation Strategies

You are free to implement the interface as you see fit. Key to your implementation is which type
you will use as a concrete instantiation of the TurtleGraphics type, which will generally follow one
of two patterns known as either a deep or a shallow embedding.

Deep Embeddings A deep embedding encodes each language construct as a node in an abstract
syntax tree, and “executes” the DSL by acting as an interpreter for each DSL construct. The state
is kept as a parameter to the interpreter function. An example structure is:

object DeepTurtleDSL extends TurtleDSL {
type TurtleGraphics = TurtleGraphicsAST

// AST Definition

abstract class TurtleGraphicsAST

case class TGEmpty() extends TurtleGraphicsAST

case class TGForward(distance: Integer) extends TurtleGraphicsAST

// Language constructs create AST nodes
val empty = TGEmpty
def forward(distance: Integer): TurtleGraphics = TGForward(distance)

final case class TurtleGraphicsState(isPenUp: Boolean, ...)
// draw "interprets" the AST

def draw(prog: TurtleGraphics, width: Integer,
height: Integer): GraphicsCanvas = {

Shallow Embeddings A shallow embedding implements each construct as a function which takes
the state as an argument. As language constructs can both read and write to the state, the function
will take an input state, and produce an output state.

object ShallowTurtleDSL extends TurtleDSL {
type TurtleGraphics = (TurtleGraphicsState => TurtleGraphicsState)
final case class TurtleGraphicsState(isPenUp: Boolean, ...)

val empty = (st: TurtleGraphicsState) => st
def forward(distance: Integer) = (st: TurtleGraphicsState) => ...
def draw(prog: TurtleGraphics, width: Integer,
height: Integer): GraphicsCanvas = {
val initialState = ...
val finalState = prog(initialState)

—
SOOI UTLk WN -

e =
Pt SN

6 Part 2: A Standalone DSL

In this part of the assignment you will implement a standalone DSL variant of Turtle called A ogo.
“Standalone” means that we are not re-using Scala as a host language, so we need to parse in
ALogo programs, typecheck them, implement substitution, expand syntactic sugar, and finally
evaluate the programs. Luckily, we have done some of this (e.g. parsing) for you, and the concrete
and abstract syntax of the Turtle standalone DSL is based on the Giraffe language from Assign-
ment 2, so you should already be familiar with it. (This also means that we will assume familiarity
with the contents of Assignment 2, and not explain the common features all over again.)

6.1 Compiling and Running the Standalone DSL

To compile the DSL interpreter, run ./compile_standalone.sh. To run the DSL interpreter, run
./run_standalone.sh. The script takes three optional arguments, along with the file to run. The
optional arguments are:

e -0 output_filename will save the result to output_file. Default: output.png.
e -w width will set the canvas width to width. Default: 800.
e -h height will set the canvas height to height. Default: 800.

o -t will run the program using the Testing implementation of TurtledSL. You can use this to
test your implementation of A| ogo even if you don’t have a working implementation of the
EDSL.

As an example, to run spiral.tg on a canvas of size 1000 by 1500 with the output written to
spiral.png, the command would be:

./run_standalone.sh -o spiral.png -w 1000 -h 1500 spiral.tg

6.2 Syntax

As noted already, Turtle’s abstract syntax extends that of Giraffe. The main new features are
lists, sequencing, while-loops, references, and primitives that correspond to elements of the Turtle
EDSL. The syntax is summarized in Figure 7.

In TurtleStandalone.scala, we define the syntax using two types, Expr and Value. Notice that list
values are implemented as Scala lists, and function values do not have any type annotations. The
Value class is defined as a subclass of Expr, which implies that value <: Expr. In pattern matching,
you can detect whether an Expr e is actually a Value using case v: Value =>; on success v will be
equal to e but have type value. There are a few examples of this in the code already.

There are some example programs in the concrete syntax in the files called squareFractal.tg, sun.tg
and so on. For example:

let colList = Red::Green::Blue::Pink::([] : color) in
let rec drawFractal(p: (int * int)): unit =
let (length, depth) = p in
if (depth == 0) then ()
else
let counterRef = ref 0 in
randCol collList;
while (!counterRef < 4) {
forward length;

right 90;
drawFractal((length / 3), (depth - 1));
counterRef := (!counterRef + 1)

} in

drawFractal((360, 5))

10

Values v == neN|beB Numbers and Booleans
| ¢ € {Red, Blue, Green, Pink, Black} Colours
| x| \x.e|recf(x)x Anonymous functions
| [v1,.-.,04] Lists
| (v1,02) Pairs
| ¢ Reference locations
0 Unit value
Expressions e == ne€lN|ej+ey|eg—ex|erxey|er/en Numbers
| beB|ifethenejelsee; |e1 ==ex|e; <ex|er >e; Booleans
| ¢ € {Red, Blue, Green, Pink, Black} Colours
| x|letx =e¢pinep Binding
| Lrefelle|er:=e References
| e1en Function Application
| [J:T|erep|casee{[]=>e1 | x::y=>er} Lists
| (eq,e2) | fst(e) | snd(e) Pairs
| (O lese Unit, Sequencing
| while (e1) {e2} | do{eq} while (e2) Looping
| forwarde | backwarde | righte | lefte Turtle Movement
| penUp | penDown | setCol e | randCol e Turtle Pen Control
| letfunf(x:7) =ejiney |letrecf(x:7): T =erine;
| let(x,y) =ejiney Syntactic Sugar

int | bool | color | list[ﬂ | ref[T] | unit
M->1T | T1 * T

Types T

Figure 7: Syntax of A oo

draws a square fractal.

6.3 Typing Rules

The typing rules for arithmetic, booleans, conditionals, functions, pairs, and lists (Figure 8) are
largely the same as covered in lectures/tutorials, but we have added arithmetic operations (—, /)
and comparisons (<, >). Many of these can be implemented just as in Assignment 2, and imple-
menting the rules for lists should follow a similar pattern. (Notice however that in Turtle, empty
lists are tagged with their type, which simplifies typechecking somewhat compared to the rules
presented in Tutorial 3). It is safe to assume that there are no occurrences of pair values, list values,
function values, or reference location values in an expression when it is being typechecked.

The Turtle-specific rules in Figure 9 for sequencing, while, references, and colors are new, but
should also be fairly straightforward to implement.

Exercise 3. Implement the typechecking function:
def tyOf(ctx: Env[Typel, e: Expr): Type
You may reuse cases from the typechecker for Giraffe from Assignment 2 (where appropriate).

[4 marks]

6.4 Substitution and Desugaring

Capture-avoiding substitution is needed for A| ggo both for desugaring and for evaluation, since
the semantics you are to implement will use substitution to replace variables with their values.
Luckily, we have defined the swapping operation for you, and most of the cases of substitution

11

I'keq:int I'kep:int I'kep:int I'kFep:int
I'n:int I'eg+ep:int e —ep:int
T'kFep:int I'ep:int I'kep:int I'kFep:int
T'kep*xer:int I'kei/ep: int
I'te;:t The:t 7€ {int, bool,color} I'ke:int Thep:int
T'Fb:bool I't ey == ey : bool I'e; <ep:bool
I'eq:int I'kep:int I'e: bool F'ke:t 'key:t
' ey > ey : bool I'tifethenejelseey : T
IF'x)=1 T'ke:m ILx:mbe:nm I'tei:mm>1 I'te:n
I'x:t I'kletx=ejiney: 1 I'bejer:m
Ix:mkFe: o If:oa>nx:mke:n
TF\x:qe:q->n I'brecf(x:m) me:m->10
'tFei:m e :n F'Fe:*xDm Fe:*xnm
Tk (e, e2): 11 *T2 T'Hfst(e) : I'Fsnd(e):

TFep:t*xm x:m,y:mke:t

T'klet(x,y) =ejiney: T

IT'key:t Tkep:list]t]
TH[]:7:ist[7] ['Fep:ep: list|T]

['ke:list[t] I'kte:m [x:m,y:lstfn]lFe:n

['tcasee{[]=>e1 |xy=>e} D
Figure 8: Typing rules for arithmetic, booleans, variables, functions, pairs, and lists

I'Fe:m T'Fe:m '+ e : bool T'Fep:unit
' ():unit I'keper:m I' - while (1) {e2} : unit

't e :unit 't e : bool
I'F do{e1} while (e2) : unit

I'ke:t I'te:ref[T] [t e :ref[T] I'tey:t
T refe: ref[t] T'kle:t T'kep:=ep: unit
I'kc:color
I'ke:int I'kFe:int I'kFe:int I'ke:int
I't forwarde : unit I' - backward e : unit It righte: unit I'tlefte: unit
I'Fe: color I'ke: list[color]
I' penUp : unit I' - penDown : unit T'I-setCole : unit 't randCole : unit

Figure 9: Typing rules for sequencing, while, references, and Turtle constructs

12

are similar to those for the Giraffe language of Assignment 2, so you can reuse them. You only
need to fill in the new cases, such as for lists, references, and the Turtle Graphics primitives.

Function values may have expressions as subterms, but we expect that values are always closed,
that is, have no free variables. Thus, for the case when the expression is actually a value v: Value,
substitution does not need to do any work (this case is already done in the starting code).

Exercise 4. Define the substitution function subst for Aj oGo expressions. (You may copy over the sample
solution from Assignment 2 to use as a starting point.)

[2 marks]

Several constructs of A| ggo are definable using others. We already saw examples of this in As-
signment 2, such as let fun, let rec and let pair. Among the constructs of A| ogo, the following
can be defined in terms of others:

let fun f(x:7) =ejinep let f =\x:T.epine;

letrecf(x:T): T =e1ine let f=recf(x:7): Terine
let p = epiney[fst(p)/x][snd(p)/y]

el;while (62) {61}

let (x,y) =ejinep
do {e1 } while (e7)

ree

When desugaring, make sure to replace any syntactic sugar inside values, by handling the cases
for Funv(x,e) and RecV(f,x,e).

Exercise 5. Implement the function desugar that replaces the above constructs in A ogo with their desug-
ared forms. (As before, you may use the similar cases for Giraffe as a starting point.)

[2 marks]

6.5 Evaluation

The semantics of A| ggo is defined using large-step evaluation rules, parameterized by a store o,
that is, a map from reference locations to values. The evaluation judgment is as follows:

gel o,

where o is the initial store mapping reference labels to their values, ¢ is the expression to be
evaluated, ¢’ is the store after evaluation, and v is the value.

The store only maps the reference locations to their values; we handle ordinary variable binding
using substitution, as in the interpreters given in class (and differently from the environment-
based semantics used in Assignment 2). Therefore, function values are of the form \ x.e or rec f(x).x.

Most rules are similar to those given in lectures, specifically for arithmetic, booleans, variables,
let-binding, functions, pairs and lists, as shown in Figure 10. The main difference is that when
multiple subexpressions are evaluated, we need to pass the updated state obtained from evaluat-
ing the first subexpression into the evaluation of the second, and so on.

6.5.1 Imperative Constructs

Turtle includes “imperative” constructs such as references, sequencing, and while-loops.

For references, the expression ref ¢ creates a new reference to the value of e, represented as a
location value ¢, and adds a mapping from ¢ to the value of e to the store. Locations are Integers
and you can use the Genloc.genloc() method to generate a fresh location. The expression e; := e
evaluates e to its (location) value /, evaluates e, to its value v, and updates the store so that £ is
mapped to v,. Finally, dereferencing !e evaluates e to its (location) value ¢, and looks up the value
of £ in the store.

13

v is a value

ool o,v

! / /!
e o, el 0,0

/
gepd o,

/ /!
o,e 0”0

oe1t+ed 0'”,01 +N U2

/ / /!
e o, el 0,0

/
ged o, v

/!
ge1—e o, v —Nv2

/ /!
o,e 0”0

og,ep ey | 0,01 %N 2

o,ed o true el o’ v

o,ell o false

o,e1/e2 | 0", 01/ 02

o,er oo

o,ifethenejelseey || 0, v

ae o, v el v

/
og,e1 0,01

o,ifethene; elsee; || 0/, v

delld v, v #v

0,61 ==ep |} 0, true

/ / /!
o,er o, o,e 0", 00

/
e d o,

0,01 ==ep |} 0, false

/ 1!
o,edo”,v

o,e1 <ep o, v <N 2

ge Lo, Axe o,eplld’, v

g,e1 > ey l}U’//,Ul >N 02

o, e[v1/x] | o, vy

a,eren |’

ge o recf(x:t): e el d,n

;02

7
g,

elvr/x,rec f(x:7):Te/fl I ", v

"
oerex 0,00

/
ogerlo,v

o, ex[v1/x] § 0”0

o,letx =ejiney |} 0,0

/ / 1!
o,e1 0,0 c,e o, v

aeld,[]:T

/ 1!
o,er 07,0

1!
ge1me o, v 0

ocelld, vz o elvi/x0/ylld v

o,casee{[]=>e; |xny=>er} | 0”0

o,elld’,(v1,02)
o,fst(e) | o/, v

gelo,v ¢ # locs(c”)

ogei ol

o,casee{[]=>e1 |xny=>e} || 0,01

/ / 1!
oger o, v o,ed 0", v

g, ((31, 62) U U/// (Ulr 02)

oel o, (v1,02)
o,snd(e) |} o/, 01

oo’ v

o,refe || o' [0 — 0], ¢

gel ot

alel o, d(0)

aer o, () el v o,e1 | o, true

e 0", ()

o,e1:=e || o[—], ()

. 7
oepe o,

o,e1 | o, false

o, while (e1) {e2} I ¢, ()

o, while (e1) {e2} |} ¢/, ()

Figure 10: Evaluation rules

14

o’ ,while (e1) {e2} 4 "' ()

The other constructs support sequential composition and looping. The expression eq; e, evaluates
e1, ignores its result, and then executes e;. The while-loop while (e) {e»} evaluates e; and if the
result is true, evaluates e, and then loops, otherwise finishes.

6.5.2 Turtle-Specific Constructs

The semantics for the turtle movement and turtle pen control primitives are best described in-
formally, as they are naturally side-effecting. The rules (not considering the side effects you will
need to implement) will be of the following form:

gelld,v

o, forwarde |} ¢, () o, penDown |} 7, ()

(and similarly for the other constructs),

They should firstly evaluate their arguments (if applicable), and then use appropriate TurtleEDSL
operations to build up a TurtleGraphics value. As discussed below, we will maintain the TurtleGraphics
value representing the behavior of the turtle as part of the program state in the evaluator; this is
not made explicit in the above rules but should be handled similarly to the store ¢.

We do not define evaluation rules for the let-operations or do-while operation, since they are
syntactic sugar, which should be removed by desugar before evaluation.

6.6 Implementing the Evaluator

The Eval class provides a function run to evaluate whole A| ogo programs. The run method is
located in a class Eval that takes an instance of the TurtleDSL trait as a parameter, and import it, so
that we can run A ggo using different instances of the TurtleDdsL trait, such as Testing for testing
or TurtleDSLImpl to actually create the graphics. The run function is given an expression, width,
height and output filename, and does the bureaucratic work of setting up the graphics canvas. It
calls a (private) helper function eval that takes a state and expression and yields an updated state
and value. The state is of type TurtleState, which is defined as follows:

private final case class TurtleState(
store: Store[Value],
graphics: TurtleGraphics

)

Here, store[Value] is the type of value stores, that is, mappings from Locations to Values. The sec-
ond component is a TurtleGraphics value built up using the operations in the provided TurtlebsL
instance passed in as an argument to Eval. The eval method should follow the inference rules
given above, maintaining the reference state in state and adding the graphics operations evalu-
ated by the program to graphics. The TurtleGraphics value in the final state will be rendered and
saved to disk.

Exercise 6. Implement the evaluator eval, whose type signature is as follows:
def eval(state: TurtleState, expr: Expr): (TurtleState, Value)

[8 marks]

15

Change Log

e V1.1 (November 9): Changed “abstract type” to “abstract class”
e V1.2 (November 14): Fixed typos in case, reference creation, and assignment rules.

e v1.3 (November 21): Added missing rule for typing ‘list construction’ or ‘cons’ (1 :: e;), and
fixed typo in the ‘nil’ rule.

e v1.4 (November 22): Added missing rule for evaluating division.

e v1.5 (November 23): Fixed a re-introduced typo in reference creation rule, and added eval-
uation rules for fst and snd.

16

	Introduction
	Constructs in Turtle Graphics
	Included Code: a Simple Graphics Library
	Co-ordinate System
	Basic Usage

	Getting started
	Objectives

	Part 1: An Embedded Domain-Specific Language
	Compiling and Running the EDSL
	EDSL Definition
	State and Geometry
	Randomness
	EDSL Implementation Strategies

	Part 2: A Standalone DSL
	Compiling and Running the Standalone DSL
	Syntax
	Typing Rules
	Substitution and Desugaring
	Evaluation
	Imperative Constructs
	Turtle-Specific Constructs

	Implementing the Evaluator

