Elements of Programming Languages Tutorial 7: Small-step semantics and type soundness Week 9 (November 16–20, 2015)

Exercises marked * are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Comparing large-step and small-step derivations

Write both large-step and small-step derivations for the following expressions. For the small-step derivations, construct the derivations of each $e \mapsto e'$ step explicitly.

(a)
$$(\lambda x.x + 1) 42$$

(b) $(\lambda x. \text{if } x == 1 \text{ then } 2 \text{ else } x + 1) 42$

2. Small-step derivations that go wrong

For each of the following expressions, show the small-step evaluation leading to the point where evaluation becomes stuck due to a dynamic type error. (There is no need to show the derivations of each step.)

(a) $((\lambda x.\lambda y.\texttt{let } z = x + y \texttt{ in } z + 1) 42)$ true

(b) $(\lambda x.if x then x + 1 else x + 2) true$

3. Small-step rules for L_{Data}

Recall that we defined the semantics for L_{Data} using big-step rules, as follows:

$e \Downarrow v$

$e_1 \Downarrow v_1 e_2$	$\psi v_2 = e$	$\Downarrow (v_1, v_2)$	$e \Downarrow (v_1, v_2)$
$(e_1, e_2) \Downarrow (v$	(v_1,v_2) for v_1,v_2	$\texttt{st} ~ e \Downarrow v_1$	$\texttt{snd} \; e \Downarrow v_2$
$e \Downarrow v$	e	$\Downarrow \texttt{left}(v_1)$	$e_1[v_1/x] \Downarrow v$
$\texttt{left}(e) \Downarrow \texttt{left}(v)$	$\texttt{case} \ e \ \texttt{of} \ \{ \tt I \}$	$left(x) \Rightarrow e_1$; $\operatorname{right}(y) \Rightarrow e_2 \} \Downarrow v$
$e \Downarrow v$	e	$e \Downarrow \texttt{right}(v_2)$	$e_2[v_2/x] \Downarrow v$
$\mathtt{right}(e) \Downarrow \mathtt{right}(v)$	case e of	$\{\texttt{left}(x) \Rightarrow e$	$\overline{_1 ; \operatorname{right}(y) \Rightarrow e_2} \Downarrow v$

- (a) For each construct, write out equivalent small-step rules. Are there any design choices in translating the big-step rules to small-step rules?
- (b) (*) Construct small-step derivations reducing the following expressions to values:

i. $(\lambda p.(\texttt{snd} p, \texttt{fst} p + 2))$ (17, 42)

ii. $(\lambda x.\texttt{case } x \texttt{ of } \{\texttt{left}(y).y + 1; \texttt{right}(z). z\}) (\texttt{left}(42))$

4. (*) Type soundness for nondeterminism

This question builds on the *nondeterministic choice* construct mentioned in an earlier tutorial, with the following typing rules:

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \Box e_2 : \tau}$$

and small-step evaluation rules:

 $e\mapsto e'$

$$\overline{e_1 \Box e_2 \mapsto e_1} \qquad \overline{e_1 \Box e_2 \mapsto e_2}$$

- (a) State the *preservation* property. Outline how we could prove the cases of preservation for nondeterministic expressions.
- (b) State the *progress* property. Outline how we could prove the cases of progress for nondeterministic expressions.