Elements of Programming Languages
Tutorial 7: Small-step semantics and type
soundness

Week 9 (November 16-20, 2015)

Exercises marked x are more advanced. Please try all unstarred exercises before
the tutorial meeting.
1. Comparing large-step and small-step derivations
Write both large-step and small-step derivations for the following expres-
sions. For the small-step derivations, construct the derivations of each e +— ¢’
step explicitly.
(@ (A\r.x+1)42
(b) (Ax.if x == 1then2elsex + 1)42

2. Small-step derivations that go wrong
For each of the following expressions, show the small-step evaluation lead-
ing to the point where evaluation becomes stuck due to a dynamic type error.
(There is no need to show the derivations of each step.)
(@) (Mr.A\y.letz=z+yinz+1)42) true
(b) (Az.if x thenz + 1 else x + 2) true
3. Small-step rules for Lp,t,

Recall that we defined the semantics for Lp,t, using big-step rules, as follows:

el v
erdvr exdog el (vi,v2) el (vi,v2)
(e1,e2) I (v1,v2) fstel v; snd e || vy
elw el left(vy) erfvr/z] v
left(e) | left(v) case e of {left(z) = e ; right(y) = e2} J v
el v e |l right(vy) eqfva/z] v

right(e) | right(v) case e of {left(z) = e;1; right(y) = ea} Jv
(a) For each construct, write out equivalent small-step rules. Are there any
design choices in translating the big-step rules to small-step rules?
(b) (%) Construct small-step derivations reducing the following expressions
to values:
i. (Ap.(sndp,fstp+2)) (17,42)
ii. (Az.case x of {left(y).y + 1; right(z). z}) (Left(42))

4. () Type soundness for nondeterminism

This question builds on the nondeterministic choice construct mentioned in an
earlier tutorial, with the following typing rules:

I'ber:m T'key:r
F}_€1|:|€22’T

and small-step evaluation rules:

ers e

e1les — e e10es — eo
(a) State the preservation property. Outline how we could prove the cases of
preservation for nondeterministic expressions.

(b) State the progress property. Outline how we could prove the cases of
progress for nondeterministic expressions.

