
Elements of Programming Languages
Tutorial 4: Subtyping and imperative

programming
Week 6 (October 26–30, 2015)

Exercises marked ? are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Imperative programming

Write evaluation derivations for the following imperative programs, starting
with the environment σ = [x = 3, y = 4].

(a) y := x+ x

(b) if x == y then x := x+ 1 else y := y + 2

(c) while x < y do x := x+ 1

2. Subtyping and type bounds

Consider the following Scala code:

abstract class Super
case class Sub1(n: Int) extends Super
case class Sub2(b: Boolean) extends Super

This defines an abstract superclass Super, and subclasses with integer and
boolean parameters.

(a) What subtyping relationships hold as a result of the above declarations?
(b) For each of the following subtyping judgments, write a derivation show-

ing the judgment holds or argue that it doesn’t hold.

i. Sub1× Sub2 <: Super × Super
ii. Sub1→ Sub2 <: Super → Super

iii. Super → Super <: Sub1→ Sub2

iv. Super → Sub1 <: Sub2→ Super

v. (?) (Sub1→ Sub1)→ Sub2 <: (Super → Sub1)→ Super

(c) Suppose we have a function

def f1(x: Super): Super = x match {
case Sub1(n) => x
case Sub2(b) => x

}

that simply inspects the type of the argument but preserves the value.
Try running f1 on Sub2(true). What type does it have? What happens
if you try to access the b field of the result?

1



(d) Now consider a different version of this function:

def f2[A](x: A): A = x match {
case Sub1(n) => x
case Sub2(b) => x

}

where we have abstracted over the argument type. Does this typecheck?
Why or why not? If it typechecks, what happens if we apply it to values
of type Sub1, Sub2, Int?

(e) Finally, consider this version:

def f3[A <: Super](x: A): A = x match {
case Sub1(n) => x
case Sub2(b) =>x

}

Here, we have used Scala’s support for a feature called type bounds to
constrain A to be a subtype of Super, with return type A. Does this type-
check? Why or why not? If it typechecks, does it solve the problems we
encountered with f1 and f2?

3. Lists

We could add built-in lists to LPoly as follows:

e ::= · · · | nil | e1 :: e2 | caselist e of {nil⇒ e1 ; x :: y ⇒ e2}
v ::= · · · | nil | v1 :: v2

τ ::= · · · | list[τ ]

Define LList to be LPoly extended with the above constructs.

The typing rule for caselist is:

Γ ` e : list[τ ] Γ ` e1 : τ ′ Γ, x:τ, y:list[τ ] ` e2 : τ ′

Γ ` caselist e of {nil⇒ e1 ; x :: y ⇒ e2} : τ ′

The basic idea here is: Given a list e, a caselist expression does a case analy-
sis. If e evaluates to nil, then we evaluate e1. Otherwise, e must evaluate to
a non-empty list of the form v :: v′, and we bind x to the head element v and
y to the tail v′, and evaluate e2.

(a) Write appropriate typing rules for nil and ::.
(b) Write a polymorphic function map that has this type:

∀A.∀B.(A→ B)→ (list[A]→ list[B])

so that map(f)(l) is the function that traverses a list of A’s and, for each
element x in l, applies the function f to it.

(c) Write out a typing derivation tree for the expression

map[int][int](λx.x+ 1)(2 :: nil)

assuming that map has the type given above.
(d) (?) Write appropriate evaluation rules for the above constructs.
(e) (?) Are lists and their associated operations definable in LPoly already?

Why or why not?

2


