Elements of Programming Languages
Tutorial 2: Substitution and alpha-equivalence
Week 4 (October 12-16, 2015)

Exercises marked x are more advanced. Please try all unstarred exercises before
the tutorial meeting.
This tutorial will use the following language:

e u= nle®e Larith
| b|eyg==eg|if ethene; elsees Ly
| z|letxz=e1iney Liet
|  AzToe|eren Liam

and the associated typing and evaluation rules covered in lectures.

1. Evaluation

(a) Write evaluation derivations showing the result value of the following
expressions:
e (Az:int. x) 1
e (Az:int.x +1) 42
e ((Az:int — int. ) (Az:int. 2)) 1
o (%) (Af:int — int. Az:int.f (f x)) (A\z:int. x + 1) 42
(b) () In Liam, the 1et operation is definable: that is, we can transform an
expression let z = e; in e to an expression not involving let with the

same evaluation behavior. Give such an expression, and show that the
evaluation rule for let can be obtained from other rules.

2. Typechecking

(a) Write Scala terms using anonymous functions (not def) having the fol-
lowing types, using only variables and applications in the function body
(that is, without using constants or primitive operations):

® Int => Int

e Int => Boolean => Int

® (Int => Boolean => String) => (Int => Boolean) => (Int => String)

(b) Write typing derivations, and identify the result type, for the following
closed expressions, or explain why the expression is not typable.
e (Az:int.x) 1
o (Az:int.x + 1) 42
e (Az:int — int. z) (Ax:int. x)
o (x) (\z:T. T 7)



3. Alpha-equivalence for L m

Recall the partial definition of a-equivalence for L, given in lecture 4:

— / — /
€1 =a €1 €2 =q €9

V=4 0 T=q @ e1® e =, €] D el
e1=q €] eilz/x] =4 ealz/y] 2z ¢ FV(ex) UFV(e})

letz =¢€; ines =, lety =€} in¢)

(a) Alpha-equivalence can be visualized by drawing an abstract syntax tree
with edges linking the “binding” and “bound” occurrences of variables.

Draw abstract syntax trees with binding edges in this way for the fol-
lowing terms:

e letz=1inlety=2inzx+y

o \t. \y.x+y

e \r. \r.x+x

e letz=1lin\y.z+vy

(b) (%) Write out the missing rules for a-equivalence for the expressions of

Lis and Ly sm. (Recall that z is bound in e in Az. e.)

(c) (x) Which of the following alpha-equivalence relationships hold?

if truethenyelsez =,y
let x = y in (if z then y else z) =, let z = y in (if = then y else 2)
letx=1in(lety=xiny+y) =4 letz=1lin(letx =2z inx + x)
AL AY.T Y =q ANy ATy T
ANY.TY =q ALY X

4. (%) Capture-avoiding substitution

Recall the definition of capture-avoiding substitution for L:

nle/z] = n
zle/z] = e
yle/z] =y (z#y)
(e1 @ ea)lefz] = eile/a] @ esle/x]
(lety =e; iney)le/x] = lety=-ei[e/z]ines (y==x)
(ety=eiines)le/s] = lety=eile/d]inesle/a] (y ¢ FV(e))

(a) Following the above pattern, extend the capture-avoiding substitution
operation to L am.

(b) Perform the following substitutions, using alpha-renaming as needed
to avoid capture:

Ay Az ((z+y)+2) |y x z/z] = 777
(if x == y then Az.x else \z.x)[z/x] = 777



