
Elements of Programming Languages
Tutorial 6: Classes, subtyping, and comprehensions

Solution notes

Exercises marked ? are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Covariant and contravariant type parameters

Notice that the Box classes have no content — they are just to demonstrate covariance and contravariance.

A = Any Nothing Super Sub1 Sub2
g1(new Box1[A])) Error OK OK OK OK
g2(new Box1[A])) Error OK Err OK Error
h1(new Box2[A])) OK Error OK Error Error
h2(new Box2[A])) OK Error OK OK Error

The OK cases are those where the subtyping relationship holds. The Error cases are those where the
relationship doesn’t hold. It may also be helpful to draw a simple lattice diagram (i.e. a tree with Super
at the top and Sub1 and Sub2 as children) and show the subsets of the tree corresponding to the types
that are valid for each call.

2. Parameterized traits

The trait should look something like this:

trait Ordered[T] {
def compare(that: T): Int
def < (that: T): Boolean = this.compare(that) < 0
def <= (that: T): Boolean = this.compare(that) <= 0
def == (that: T): Boolean = this.compare(that) == 0
def != (that: T): Boolean = this.compare(that) != 0
def > (that: T): Boolean = this.compare(that) > 0
def >= (that: T): Boolean = this.compare(that) >= 0

}

3. List comprehensions

(a)

Result = List(2,3,4)
List(1,2,3).map{x => x + 1}

// or equivalently
List(1,2,3).flatMap{x => List(x + 1)}

(b)

Result = List(1)
List(1,2,3).filter{x => x % 2 == 0}.map{x => x / 2}

// or equivalently
List(1,2,3).flatMap{x => if (x % 2 == 0) {List(x/2)} else {Nil}}

(c)

1



Result = List((1,2),(1,3), (2,3))
List(1,2,3).flatMap{x => List(1,2,3).filter{y => x < y}.map{y => (x,y)}}

// or
List(1,2,3).flatMap{x => List(1,2,3).flatMap{y =>

if (x < y) {List((x,y))} else {Nil} }}

4. Covariant lists

(a) Something like

Cons(1,Cons("abc",Nil))

(b) Scala gives a type error saying that it expects the two arguments to be of some common List[?]

type.

(c) Something like this:

def append2[C, A<:C, B <: C]
(l: List[A], m: List[B]): List[C] = l match {

case Nil => m
case Cons(x,xs) => Cons[C](x,append2(xs,m))

}

Observe that the B <: C constraint is needed for the Nil case to coerce m: List[B] to List[C].
Similarly, A <: C is needed in the Cons case. The explicit annotation [C] on Cons in the second case
is not strictly necessary, but it may be helpful to point out that Cons is used at type C there.

2


