FOR INTERNAL SCRUTINY (date of this version: 4/12/2015)

UNIVERSITY OF EDINBURGH
COLLEGE OF SCIENCE AND ENGINEERING
SCHOOL OF INFORMATICS

INFR10061 ELEMENTS OF PROGRAMMING LANGUAGES

Tuesday 15 April 2014

00:00 to 00:00

INSTRUCTIONS TO CANDIDATES

Answer QUESTION 1 and ONE other question.
Question 1 is COMPULSORY.

All questions carry equal weight.

CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

Year 3 Courses

Convener: ITO-Will-Determine
External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1.

FOR INTERNAL SCRUTINY (date of this version: 4/12/2015)

(a) Using a BNF grammar, define the syntax of the untyped lambda-calculus
(i.e. variables, lambda-abstraction, and application).

(b) For each of the following pairs of expressions, indicate whether they are
a-equivalent.

if z then y else 2 =, if x then z else y (1)

Ar Ay Az.if = then y else 2 =) Ar.A\z.\y.if x then z elsey (2)
e dyx+y =L Ay Azoy+z (3)

A y.x+y = v Az.o+y (4)

(c¢) Explain, in words, what is wrong with the following evaluation step, and
how to correct the problem.

A yx+y) (y+1)— Ay (y+1)+vy)

(d) For each of the following three evaluation strategies, give a short definition
and list one advantage of each approach.

i. Call-by-value
ii. Call-by-name
iii. Call-by-need

(e) Write the small-step operational semantics rules for call-by-name evaluation
for the untyped lambda-calculus.

Page 1 of 3

[3 marks]

[4 marks]

[3 marks]

[9 marks]

[6 marks]

FOR INTERNAL SCRUTINY (date of this version: 4/12/2015)

2. (a)

Consider the following syntax for expressions involving arrays:
e=---|array(ep,eq) | er[es] | e1]ea] == e3

The expression array(n,v) builds a new array of n elements initialized to
value v. The expression arr[i| dereferences array arr to get element i. Fi-
nally, the expression arr[i] := v updates array arr to set element i to v, and
returns a unit value ().

i. Assume the type of arrays of values of type 7 is written array|r]. Give
appropriate typing rules for these constructs.

ii. Give two possible subtyping rules for arrays, one illustrating covariant
subtyping and the other illustrating contravariant subtyping.

iii. Explain whether subtyping for arrays should be covariant, contravari-
ant, both, or neither.

Consider the following Scala code, which involves both exceptions and mu-
table (var) variables:

var x = 0
object MyException extends Throwable
try {
try {
x=x+1
throw MyException
x=x+ 10
} catch {
case e: NullPointerException => x = x + 100
}
finally {
x = x + 1000
b
} catch {
case e: MyException => x = x + 10000

3

i. Explain, in words, what happens when the above code is executed.

ii. In Scala, catch blocks are written using pattern matching against the
run-time type of the exception. What other features of Scala or Java
could be used to implement this?

iii. What value does x have after the code is executed?

Page 2 of 3

[6 marks]
[4 marks]

[4 marks]

[4 marks]

[2 marks]
[5 marks]

FOR INTERNAL SCRUTINY (date of this version: 4/12/2015)

3. (a)

Consider the following Scala code:

1| val y = 0;

2 | class A(x: Int) {

3| valz=x+y

4 | def f(x: String) = z
|}

5 | new A(y).f("z")

For each line, list all of the identifiers on the line and indicate whether they
are binding or bound occurrences.

Give a complete typing derivation for the following judgment, or argue that
the expression is not well-formed:

FAA A xbool \y:ANz:A.if = then y else z:VAbool > A—A— A

In the C/C++/Java family of languages, the following do...while con-
struct is provided:

do {
stmt
} while (exp)

This will evaluate the statement stmt and then test the Boolean value of
expression exp; if the value is true, execution continues by evaluating the
do...while statement again, otherwise execution continues.

i. Give operational semantics rules for do. . .while statements (extending
the large-step semantics for while-programs)

ii. Show how to express a single do { stmt } while (exp) statement in
terms of while and if ... then ... else.

Page 3 of 3

[5 marks]

[9 marks]

[6 marks]

[5 marks]

