
Module Title: ELEMENTS OF PROGRAMMING LANGUAGES
Exam Diet (Dec/April/Aug): MOCK EXAM 2015
Brief notes on answers:

1. (a)

e ::= x | e1 e2 | λx.e

(b) (1): FALSE, (2): TRUE, (3): TRUE, (4): FALSE

(c) The problem is that the term substituted for x contains a free variable y, which
is captured by the lambda-bound variable y. This is bad because it means that
y+1 will evaluate to one plus the argument passed in for y, rather than one plus
whatever y referred to outside of the function. The way to fix this is to rename
the bound variable y before performing the substitution, e.g.:

(λx.λy.x+ y) (y + 1) 7→ (λy′.(y + 1) + y′)

(d) (i). Call-by-value Call-by-value means that arguments are evaluated to values
before being substituted in for variables. One advantage of call-by-value
is that the program’s behavior and performance is more predictable, i.e.
we can more easily determine when an expression is evaluated, and it is
evaluated at most once.

(ii). Call-by-name Call-by-name means that arguments are substituted without
being computed, and are only evaluated if they are needed inside the function
call. One advantage of call-by-name is that expressions whose value is never
needed are not evaluated. Another advantage is that it can be easier to
reason about the correctness of programs since equational principles hold.

(iii). Call-by-need Call-by-need means that arguments are not evaluated until
their values are needed, but once they are evaluated, the value is recorded
so that it can be reused. One advantage of call-by-need is that expressions
are evaluated at most once: if the expression is not needed, it isn’t evaluated.
Another advantage is (like call-by-name) equational reasoning is valid, and
lazy evaluation can be used to implement infinite data structures such as
streams.

(e)

e1 7→ e′1
e1 e2 7→ e′1 e2 (λx. e1) e2 7→ e1[e2/x]

2. (a) (i).

Γ ` e1 : int Γ ` e2 : τ

Γ ` array(e1, e2) : array[τ]

Γ ` e1 : array[τ] Γ ` e2 : int

Γ ` e1[e2] : τ

Γ ` e1 : array[τ] Γ ` e2 : int Γ ` e3 : τ

Γ ` e1[e2] := e3 : unit

i

(ii).

τ <: τ ′

array[τ] <: array[τ ′]
covariant

τ ′ <: τ
array[τ] <: array[τ ′]

contravariant

2 marks for each rule, correctly labeled.

(iii). Arrays shouldn’t be contravariant because this would mean we can cast an
array of Objects to an array of Integers and so treat arr[i] as an integer
even if it is actually a string. Arrays shouldn’t be covariant because this
would mean we can cast an array of Integers to and array of Objects, and
so it would be allowed to update an array of Integers with an arbitrary
Object (e.g. a String), violating the type of the array. Therefore, arrays
should be invariant (that is, neither contravariant nor covariant): that is,
the subtyping relation only relates array types whose arguments are equal.

(b) (i). First, mutable variable x is initialized to value 0. Then we define a new
exception type MyException by making it a subclass of Throwable. We
then start a try block, which consists of another try block. In the inner
try block, we first add 1 to x, then we raise an exception. The statement
adding 10 to x is never executed because of the exception. The exception is
not caught by the inner catch block because the type of exception doesn’t
match, so the statement adding 100 to x is not executed. The finally block
is executed so 1000 is added to x. The thrown exception MyException
therefore exits the inner try/catch/finally block and is handled by the outer
catch block, which does have a case matching it. So, 10000 is added to x.

(ii). type tests and coercion, i.e. isInstanceof and asInstanceOf. One mark
for mentioning each feature.

(iii). The value of x will be 11001. (1 mark for each correct digit.)

3. (a) Line 1: y is binding

Line 2: A is binding and x is binding

Line 3: z is binding and x,y are bound

Line 4: f, x are binding and z is bound

Line 5: A, y, f are bound

(b)

x:bool, y:A, z:A ` x : bool x:bool, y:A, z:A ` y : A x:bool, y:A, z:A ` z : A

x:bool, y:A, z:A ` if x then y else z : A

x:bool, y:A ` λz:A.if x then y else z : A→ A

x:bool ` λy:A.λz:A.if x then y else z : A→ A→ A

` λx:bool.λy:A.λz:A.if x then y else z : bool → A→ A→ A

` ΛA.λx:bool.λy:A.λz:A.if x then y else z : ∀A.bool → A→ A→ A

(c) (i).

σ, s ⇓ σ′ σ′, e ⇓ true σ′, s while e ⇓ σ′′

σ, do s while e ⇓ σ′′

σ, s ⇓ σ′ σ′, e ⇓ false

σ, do s while e ⇓ σ′

(ii). This should look like:

stmt; while (exp) { stmt }

ii

