Variables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding	Types	Semantics
				Variables			
	s of Programming 4: Variables, binding and			 A variable i expression. Often writt 	s a symbol that can sta en <i>x, y, z</i> ,	and for another	
	James Cheney			• Let's extend	d L _{Arith} with variables:		
	University of Edinburg	1			$e ::= e_1 + e_2 \mid e_1 \times e_2$	$\mid n \mid x \in Var$	
	October 6, 2015				horthand for an arbitra ession variables	ry variable in <i>Var</i> ,	the
		(ㅁ) 《큔) 《글》 《글》	E INR			< 口 > < 団 > < 団 > < 団 > < 国	▶ ≣ •੭ °

Semantics

Substitution

Variables and Substitution

• A variable can "stand for" another expression.

Scope and Binding

- What does this mean precisely?
- Suppose we have x + 1 and we want x to "stand for" 42.
- We should be able to *replace x* everywhere in *x* + 1 with 42:

 $x + 1 \rightsquigarrow 42 + 1$

• Another example: if y "stands for" x + 1 then

$$x + y + 1 \rightsquigarrow x + (x + 1) + 1$$

• (Remember that we insert parentheses when necessary to disambiguate in abstract syntax expressions.)

Substitution

Variables and Substitution

• Let's introduce a notation for this *substitution* operation:

Definition (Substitution)

Given e_1, x, e_2 , the substitution of e_2 for x in e_1 is an expression written $e_1[e_2/x]$.

Scope and Binding

 $\bullet\,$ For L_{Arith} with variables, define substitution as follows:

$$n[e/x] = n$$

$$x[e/x] = e$$

$$y[e/x] = y \quad (x \neq y)$$

$$(e_1 + e_2)[e/x] = e_1[e/x] + e_2[e/x]$$

$$(e_1 \times e_2)[e/x] = e_1[e/x] \times e_2[e/x]$$

ariables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding	Types	Semantics
соре				Scope			
 As we all kr names: 	now from programming,	we can <i>reuse</i> variat	ble	Definition (Scop	e)		
	foo(x: Int) = x + 1 par(x: Int) = x * x			•	variable name is the co ch occurrences of the v		
those in bar • Moreover th	ences of x in foo have n r ne following code is equ se in foo or bar):	-	ot	doesn't nec occurrences	a little casual here: "re essarily mean that the s evaluate to the same e, the variables could r	two variable value at run time.	ng"
	foo(x: Int) = x + 1 par(y: Int) = y * y			•	ell whose value changes		
ariables and Substitution	Scope and Binding	< □ > < @ > < ≣ > < ≣ > Types	≣ •∕ ९ (~ Semantics	Variables and Substitution	Scope and Binding	<□▷ < 클▷ < 클▷ < 클 Types	ト ヨーク Semant
	and Bound Vari		Schundes	Dynamic vs. st		1990	ocmanti

- Certain occurrences of variables are called *binding*
- Again, consider

def foo(x: Int) = x + 1def bar(y: Int) = y * y

- The occurrences of x and y on the left-hand side of the definitions are *binding*
- The other occurrences are called *bound*
- Binding occurrences define scopes: two bound variables are in the same scope if they are bound by the same binding occurrence.

- The terms *static* and *dynamic* scope are sometimes used.
- In static scope, the scope and binding occurrences of all variables can be determined from the program text, without actually running the program.
- In **dynamic scope**, this is not necessarily the case: the scope of a variable can depend on the context in which it is evaluated **at run time**.
- We will have more to say about this later when we cover functions
 - but for now, the short version is: Static scope good, dynamic scope bad.

Types

Semantics

Semantics

Free variables

• The set of *free variables* of an expression is defined as:

$$FV(n) = \emptyset$$

$$FV(x) = \{x\}$$

$$FV(e_1 \oplus e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(\text{if } e \text{ then } e_1 \text{ else } e_2) = FV(e) \cup FV(e_1) \cup FV(e_2)$$

$$FV(\text{let } x = e_1 \text{ in } e_2) = FV(e_1) \cup (FV(e_2) - \{x\})$$
where $X - Y$ is the set of elements of X that are not in Y

$$\{x, y, z\} - \{y\} = \{x, z\}$$

- (Recall that $e_1 \oplus e_2$ is shorthand for several cases.)
- Examples:

$$FV(x + y) = \{x, y\} FV(\text{let } x = y \text{ in } x) = \{y\}$$

FV(let x = x + y in z) = {x, y, z}

Simple scope: let-binding

• For now, we consider a very basic form of scope: let-binding.

 $e ::= \cdots | x |$ let $x = e_1$ in e_2

- We define L_{Let} to be L_{lf} extended with variables and let.
- In an expression of the form let $x = e_1$ in e_2 , we say that x is bound in e_2
- Intuition: let-binding allows us to use a variable x as an abbreviation for some other expression:

let
$$x = 1 + 2$$
 in $3 \times x \rightsquigarrow 3 \times (1 + 2)$

Va	ariables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding
A	Alpha-Equivalence				Alpha-equivalence:	example

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Two expressions that are equivalent "modulo consistent
 - renaming of bound variables" are called alpha-equivalent • For L_{Let} we can define alpha-equivalence as follows:

Alpha-equivalence for
$$L_{Let} (e_1 \equiv_{\alpha} e_2)$$

$$\overline{v \equiv_{\alpha} v} \qquad \overline{x \equiv_{\alpha} x} \qquad \frac{e_1 \equiv_{\alpha} e'_1 \quad e_2 \equiv_{\alpha} e'_2}{e_1 \oplus e_2 \equiv_{\alpha} e'_1 \oplus e'_2}$$

$$\cdots \qquad \frac{e_1 \equiv_{\alpha} e'_1 \quad e_2[z/x] \equiv_{\alpha} e'_2[z/y] \quad z \notin FV(e_2) \cup FV(e'_2)}{\det x = e_1 \text{ in } e_2 \equiv_{\alpha} \det y = e'_1 \text{ in } e'_2}$$

- Structural equality except for let
- For let, we compare the e_1 s and replace the bound names with fresh names and compare the e_2s

Alpha-equivalence: examples

To illustrate, here are some examples of equivalent terms:

$$egin{aligned} x \equiv_lpha x & (\operatorname{let} x = y \,\operatorname{in} x) \equiv_lpha (\operatorname{let} z = y \,\operatorname{in} z) \ & (\operatorname{let} y = 1 \,\operatorname{in} \,\operatorname{let} x = 2 \,\operatorname{in} x + y) \ & \equiv_lpha & (\operatorname{let} w = 1 \,\operatorname{in} \,\operatorname{let} z = 2 \,\operatorname{in} z + w) \end{aligned}$$

and here are some inequivalent terms:

$$egin{aligned} &x
ot \equiv_{lpha} y & (ext{let } x = y ext{ in } x)
ot \equiv_{lpha} (ext{let } y = x ext{ in } y) \ & (ext{let } y = 1 ext{ in let } x = 2 ext{ in } x + y) \ &
ot \equiv_{lpha} & (ext{let } y = 1 ext{ in let } y = 2 ext{ in } y + y) \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ ■ のQ@

Variables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding	Types	Semantics
- · ·	1.1			т с ·			
Types and vari	ables			I vpes for vari	ables and let, info	rmallv	
·) [·) - · · · · · · · · · · · · · · · · ·		J	

- Once we add variables to our language, how does that affect typing?
- Consider

let $x = e_1$ in e_2

When is this well-formed? What type does it have?

- Consider a variable on its own: what type does it have?
- Different occurrences of the same variable in different scopes could have different types.
- We need a way to keep track of the types of variables

- Suppose we have a way of keeping track of the types of variables (say, some kind of map or table)
- When we see a variable x, look up its type in the map.
- When we see a let x = e₁ in e₂, find out the type of e₁. Add the information that x has type τ₁ to the map, and check e₂ using the augmented map.
- Note: The local information about x's type should not persist beyond typechecking its scope e₂.

		<ロ> <=>> <=>> <=>> <=>> <=>>	≣ • ^ \ \ \ \			《日》《圖》《臣》《臣》	目 うくで
Variables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding	Types	Semantics
Types for varia	bles and let, info	ormally		Type Environn	nents		

• For example:

let
$$x = 1$$
 in $x + 1$

is well-formed: we know that x must be an int since it is set equal to 1, and then x + 1 is well-formed because x is an int and 1 is an int.

• On the other hand,

let
$$x = 1$$
 in if x then 42 else 17

is not well-formed: we again know that x must be an int while checking if x then 42 else 17, but then when we check that the conditional's test x is a bool, we find that it is actually an int.

• We write Γ to denote a *type environment*, or a finite map from variable names to types, often written as follows:

$$\Gamma ::= x_1 : \tau_1, \ldots, x_n : \tau_n$$

- In Scala, we can use the built-in type ListMap[Variable,Type] for this.
- Moreover, we write Γ(x) for the type of x according to Γ and Γ, x : τ to indicate extending Γ with the mapping x to τ.

Variables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding	Types	Semantics
Types for varia	bles and let, form	nally		Types for varia	ables and let, forn	nally	

• We now generalize the ideal of well-formedness:

Definition (Well-formedness in a context)

We write $\Gamma \vdash e : \tau$ to indicate that *e* is well-formed at type τ (or just "has type τ ") in context Γ .

• The rules for variables and let-binding are as follows:

$\Gamma \vdash e : \tau$ for L _{Let}	
$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$	$\frac{\Gamma \vdash e_1 : \tau_1 \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \texttt{let} \ x = e_1 \ \texttt{in} \ e_2 : \tau_2}$

• We also need to generalize the L_{If} rules to allow contexts:

$\boxed{\Gamma\vdash e:\tau} \text{ for } L_{lf}$	
$\overline{\Gamma \vdash n : int}$	$\frac{\Gamma \vdash e_1 : \tau_1 \Gamma \vdash e_2 : \tau_2 \oplus : \tau_1 \times \tau_2 \to \tau}{\Gamma \vdash e_1 \oplus e_2 : \tau}$
$\overline{\Gamma \vdash b}$: bool	$\frac{{\textstyle \Gamma \vdash e: \texttt{bool} {\textstyle \Gamma \vdash e_1 : \tau {\textstyle \Gamma \vdash e_2 : \tau}}}{{\textstyle \Gamma \vdash \texttt{if} \; e \; \texttt{then} \; e_1 \; \texttt{else} \; e_2 : \tau}$

- This is straightforward: we just add Γ everywhere.
- The previous rules are special cases where Γ is empty.

		《日》《圖》《臣》《臣》	≡ ∽ へ ⊘			《日》《圖》《圖》《圖》	目 うくぐ
Variables and Substitution	Scope and Binding	Types	Semantics	Variables and Substitution	Scope and Binding	Types	Semantics
Examples, revis	sited			Evaluation for	let and variabl	es	
\\/	echeck as follows:				ach: whenever we see : te <i>e</i> 1 to <i>v</i> 1	let $x=e_1$ in e_2 ,	

2 replace x with v_1 in e_2 and evaluate that

 $e_1 \Downarrow v_1 \quad e_2[v_1/x] \Downarrow v_2$ let $x = e_1$ in $e_2 \Downarrow v_2$

- Note: We always substitute values for variables, and do not need a rule for "evaluating" a variable
- This evaluation strategy is called *eager*, *strict*, or (for historical reasons) call-by-value
- This is a design choice. We will revisit this choice (and consider alternatives) later.

we can now typecheck as follows:

$$\frac{\overline{x: int \vdash x: int} \quad \overline{x: int \vdash 1: int}}{\vdash let \ x = 1 \ in \ x + 1: int}$$

On the other hand:

 $x: int \vdash x: bool \cdots$ $\overline{\vdash 1: \text{int}}$ $\overline{x: \text{int} \vdash \text{if } x \text{ then } 42 \text{ else } 17:??}$ \vdash let x = 1 in if x then 42 else 17 :??

is not derivable because the judgment $x : int \vdash x : bool isn't$.

Types

Semantics

Semantics

Substitution-based interpreter

```
type Variable = String
...
case class Var(x: Variable) extends Expr
case class Let(x: Variable, e1: Expr, e2: Expr)
  extends Expr
...
def eval(e: Expr): Value = e match {
    ...
Let(x,e1,e2) =>
    val v = eval e1
    val e2' = subst(e2,val2expr(v),x)
    eval e2'
}
```

• Note: No case for Var(x); need to convert Value to Expr

riables and Substitution Scope and Binding Types	

Capture-avoiding substitution

- To fix this problem, substitution needs to avoid capture
- $\bullet~\mbox{For L_{Let}},$ this works as follows:

$$(ext{let } y=e_1 ext{ in } e_2)[e/x] = ext{let } y=e_1[e/x] ext{ in } e_2'$$

where $e_2'= \left\{egin{array}{c} e_2 & (y=x) \ e_2[e/x] & (y
otin FV(e)) \end{array}
ight.$

- Note: The above cases are non-exhaustive
- But it is always safe to rename to a completely fresh name z ∉ FV(e, e₁, e₂)

let
$$y=e_1$$
 in $e_2\equiv_lpha$ let $z=e_1$ in $e_2[z/y]$

so that the second case applies

Substitution revisited

• Consider the following two alpha-equivalent terms:

 $(\text{let } x = 1 \text{ in } x + y) \equiv_{\alpha} (\text{let } z = 1 \text{ in } z + y)$

Intuition: the choice of bound name x (or z) does not matter, as long as we avoid other names

• Now consider what happens if we substitute:

$$(let x = 1 in x + y)[x/y] = let x = 1 in x + x$$

But

Variables and Substitution

(let z = 1 in z + y)[x/y] = let z = 1 in z + x

- These are not alpha-equivalent!
- Substituting for x under a binding of x leads to variable capture

Types

Scope and Binding

Example, revisited

• Now consider the example:

$$(\text{let } x = 1 \text{ in } x + y)[x/y]$$

Neither case of capture-avoiding substitution for let applies. But we can α -rename:

$$(\operatorname{\texttt{let}} x = 1 ext{ in } x + y)[x/y] \equiv_lpha (\operatorname{\texttt{let}} w = 1 ext{ in } w + y)[x/y]$$

Now the second case applies:

$$(let w = 1 in w + y)[x/y] = let w = 1 in w + x$$

• Capture-avoiding substitution is partial on expressions, but total and well-defined on alpha-equivalence classes of expressions. Types

Types

Alternative semantics: environments

- Another common way to handle variables is to use an *environment*
- An environment σ is a partial function from variables to values (e.g. a Scala ListMap[Variable,Value]).
- $\bullet\,$ We add σ as an argument to the evaluation judgment:

$\sigma, e \Downarrow \mathbf{v}$	
$\overline{\sigma, \mathbf{v} \Downarrow \mathbf{v}}$	$\frac{\sigma, e_1 \Downarrow v_1 \sigma, e_2 \Downarrow v_2}{\sigma, e_1 + e_2 \Downarrow v_1 + N v_2} \qquad \frac{\sigma, e_1 \Downarrow v_1 \sigma, e_2 \Downarrow v_2}{\sigma, e_1 \times e_2 \Downarrow v_1 \times N v_2}$
	$\frac{\sigma, e_1 \Downarrow v_1 \sigma[x = v], e_2 \Downarrow v_2}{\sigma, \texttt{let } x = e_1 \texttt{ in } e_2 \Downarrow v_2} \overline{\sigma, x \Downarrow \sigma(x)}$

• Coursework 1 asks you to implement such an interpreter.

Summary

- Today we've covered:
 - Basics of variables, scope, and binding
 - Free variables, alpha-equivalence, and substitution
 - Let-binding and how it affects typing and semantics

Next time:

- Functions and function types
- Recursion

・ロト・日本・モート ヨー うへの