
Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Elements of Programming Languages
Lecture 15: Evaluation strategies and laziness

James Cheney

University of Edinburgh

November 20, 2015

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Overview

Final few lectures: cross-cutting language design issues

So far:

Type safety
References, arrays, resources

Today:

Evaluation strategies (by-value, by-name, by-need)
Impact on language design (particularly handling effects)

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Evaluation order

We’ve noted already that some aspects of small-step
semantics seem arbitrary

For example, left-to-right or right-to-left evaluation

Consider the rules for +,×. There are two kinds:
computational rules that actually do something:

v1 + v2 7→ v1 +N v2 v1 × v2 7→ v1 ×N v2

and administrative rules that say how to evaluate inside
subexpressions:

e1 7→ e ′1
e1 ⊕ e2 7→ e ′1 ⊕ e2

e2 7→ e ′2
v1 ⊕ e2 7→ v1 ⊕ e ′2

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Evaluation order

We can vary the evaluation order by changing the
administrative rules.

To evaluate right-to-left:

e2 7→ e ′2
e1 ⊕ e2 7→ e1 ⊕ e ′2

e1 7→ e ′1
e1 ⊕ v2 7→ e ′1 ⊕ v2

To leave the evaluation order unspecified:

e1 7→ e ′1
e1 ⊕ e2 7→ e ′1 ⊕ e2

e2 7→ e ′2
e1 ⊕ e2 7→ e1 ⊕ e ′2

by lifting the constraint that the other side has to be a
value.



Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Call-by-value

So far, function calls evaluate arguments to values before
binding them to variables

e1 7→ e ′1
e1 e2 7→ e ′1 e2

e2 7→ e ′2
v1 e2 7→ v1 e ′2 (λx . e) v 7→ e[v/x ]

This evaluation strategy is called call-by-value.

Sometimes also called strict or eager

“Call-by-value” historically refers to the fact that
expressions are evaluated before being passed as
parameters

It is the default in most languages

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Example

Consider (λx .x × x) (1 + 2× 3)

Then we can derive:

2× 3 7→ 6
(λx .x × x) (1 + 2× 3) 7→ (λx .x × x) (1 + 6)

Next:
2× 3 7→ 7

(λx .x × x) (1 + 6) 7→ λx .x × x) 7

Finally:

(λx .x × x) 7 7→ 7× 7 7→ 49

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Interpreting call-by-value

We evaluate subexpressions fully before substituting them for
variables:

def eval (e: Expr): Value = e match {

...

case Let(x,e1,e2) => eval(subst(e2,eval(e1),x)

...

case Lambda(x,ty,e) => Lambda(x,ty,e)

case Apply(e1,e2) => eval(e1) match {

case Lambda(x,_,e) => subst(e,eval(e2),x)

}

}

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Call-by-name

Call-by-value may evaluate expressions unnecessarily
(leading to nontermination in the worst case)

(λx .42) loop 7→ (λx .42) loop 7→ · · ·

An alternative: substitute expressions before evaluating

(λx .42) loop 7→ 42

To do this, remove second administrative rule, and
generalize the computational rule

e1 7→ e ′1
e1 e2 7→ e ′1 e2 (λx . e1) e2 7→ e1[e2/x ]

This evaluation strategy is called call-by-name (the
“name” is the expression)



Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Example, revisited

Consider (λx .x × x) (1 + 2× 3)

Then in call-by-name we can derive:

(λx .x × x) (1 + 2× 3) 7→ (1 + (2× 3))× (1 + (2× 3)))

The rest is standard:

(1 + (2× 3))× (1 + (2× 3)) 7→ (1 + 6)× (1 + (2× 3)))

7→ 7× (1 + (2× 3)))

7→ 7× (1 + 6))

7→ 7× 7 7→ 49

Notice that we recompute the argument twice!

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Interpreting call-by-name

We substitute expressions for variables before evaluating.

def eval (e: Expr): Value = e match {

...

case Let(x,e1,e2 ) => eval(subst(e2,e1,x)

...

case Lambda(x,ty,e) => Lambda(x,ty,e)

case Apply(e1,e2) => eval(e1) match {

case Lambda(x,_,e) => subst(e,e2,x)

}

}

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Call-by-name in Scala

In Scala, can flag an argument as being passed by name
by writing => in front of its type

Such arguments are evaluated only when needed (but
may be evaluated many times)

scala> def byName(x : => Int) = x + x

byName: (x: => Int)Int

scala> byName({ println("Hi there!"); 42})

Hi there!

Hi there!

res1: Int = 84

This can be useful (see next week’s tutorial)

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Simulating call-by-name

Using functions, we can simulate passing e : τ by name in
a call-by-value language

Simply pass it as a “delayed” expression
λ().e : unit→ τ .

When its value is needed, apply to ().

Scala’s “by name” argument passing is basically syntactic
sugar for this (using annotations on types to decide when
to silently apply to ())



Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Comparison

Call-by-value evaluates every expression at most once

... whether or not its value is needed
Performance tends to be more predictable
Side-effects happen predictably

Call-by-name only evaluates an expression if its value is
needed

Can be faster (or even avoid infinite loop), if not needed
But may evaluate multiple times if needed more than
once
Reasoning about performance requires understanding
when expressions are needed
Side-effects may happen multiple times or not at all!

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Best of both worlds?

A third strategy: evaluate each expression when it is
needed, but then save the result

If an expression’s value is never needed, it never gets
evaluated

If it is needed many times, it’s still only evaluated once.

This is called call-by-need (or sometimes lazy) evaluation.

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Laziness in Scala

Scala provides a lazy keyword

Variables declared lazy are not evaluated until needed

When they are evaluated, the value is memoized

scala> lazy val x = {println("Hello"); 42}

x: Int = <lazy>

scala> x + x

Hello

res0: Int = 84

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Laziness in Scala

Actually, laziness can also be emulated using references
and variant types:

class Lazy[A](a: => A) {

private var r: Either[A,() => A] = Right{() => a}

def force = r match {

case Left(a) => a

case Right(f) => {

val a = f()

r = Left(a)

a

}

}

}



Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Call-by-need

The semantics of call-by-need is a little more complicated.

We want to share expressions to avoid recomputation of
needed subexpressions

We can do this using a “memo table” σ : Loc → Expr

(similar to the store we used for references)

Idea: When an expression e is bound to a variable,
replace it with a label ` bound to e in σ

The labels are not regarded as values, though.
When we try to evaluate the label, look up the
expression in the store and evaluate it

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Rules for call-by-need

σ, e 7→ σ′, e ′

σ, (λx .e1) e2 7→ σ[` := e2], e1[`/x ]

σ, let x = e1 in e2 7→ σ[` := e1], e2[`/x ]

σ[` := v ], ` 7→ σ[` := v ], v

σ, e 7→ σ′, e ′

σ[` := e], ` 7→ σ′[` := e ′], `

When we reduce a function application or let, add
expression to the memo table and replace with label

When we encounter the label, look up its value or
evaluate it (if not yet evaluated)

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Rules for call-by-need

As with LRef , we also need to adjust all of the rules to handle
σ.

σ, e 7→ σ′, e ′

σ, e1 7→ σ′, e ′1
σ, e1 ⊕ e2 7→ σ′, e ′1 ⊕ e2

σ, e2 7→ σ′, e ′2
σ, v1 ⊕ e2 7→ σ′, v1 ⊕ e ′2

σ, v1 + v2 7→ σ, v1 +N v2 σ, v1 × v2 7→ σ, v1 ×N v2

...

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Example, revisited again

Consider (λx .x × x) (1 + 2× 3)

Then we can derive:

[], (λx .x × x) (1 + 2× 3) 7→ [` = 1 + (2× 3)], `× `

Next, we have:

[` = 1 + (2×3)], `× ` 7→ [` = 1 + 6], `× ` 7→ [` = 7], `× `

Finally, we can fill in the ` labels:

[` = 7], `×` 7→ [` = 7], 7×` 7→ [` = 7], 7×7 7→ [` = 7], 49

Notice that we compute the argument only once (but
only when its value is needed).



Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Pure functional programming

Call-by-name/call-by-need interact badly with side-effects

On the other hand, they support very strong equational
reasoning about programs

Haskell (and some other languages) are pure: they adopt
lazy evaluation, and forbid any side-effects!

This has strengths and weaknesses:

(+) Easier to optimize, parallelize because side-effects
are forbidden
(+) Can be faster
(-) but memoization has overhead (e.g. memory leaks)
and performance is less predictable
(-) Dealing with I/O, exceptions etc. requires major
rethink

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

I/O in Haskell

Dealing with I/O and other side-effects in Haskell was a
long-standing challenge

Today’s solution: use a type constructor IO a to
“encapsulate” side-effecting computations

do { x <- readLn::IO Int ; print x }

123

123

Note: do-notation is also a form of comprehensions

Haskell’s monads provide (equivalents of) the map and
flatMap operations

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Lazy data structures

We have (so far) assumed eager evaluation for data
structures (pairs, variants)

e.g. a pair is fully evaluated to a value, even if both
components are not needed

However, alternative (lazy) evaluation strategies can be
considered for data structures too

e.g. could consider a pair (e1, e2) to be a value; we only
evaluate e1 if it is “needed” by applying fst:

ghci> fst (42, undefined) == 42

An example: streams (see next week’s tutorial)

ghci> let stream = ones = 1::ones

ghci> take 10 ones

Evaluation order and call-by-value Call-by-name Call-by-need and lazy evaluation

Summary

We are continuing our tour of language-design issues

Today we covered:

Call-by-value (the default)
Call-by-name
Call-by-need and lazy evaluation

Next time:

Exceptions
Control abstractions


