
Course review Exam information Conclusions

Elements of Programming Languages
Course review

James Cheney

University of Edinburgh

November 27, 2015

Course review Exam information Conclusions

Overview

We’ve now covered

Basic concepts: ASTs, evaluation, typing, names, scope
Common elements of any programming language
Programming in the large: components, abstractions
Language design issues

Today:

Review of course, pointers to related reading
Information about the exam
Conclusions

Course review Exam information Conclusions

Intro & Abstract syntax

Concrete vs. Abstract Syntax

Abstract syntax trees

Abstract syntax of LArith in several languages

Structural induction over syntax trees

Reading: CPL 1, 4.1, 5.1; PFPL 1.1

Course review Exam information Conclusions

Evaluation & Interpretation

A simple interpreter for arithmetic expressions

Evaluation judgment e ⇓ v and big-step evaluation rules

Totality, uniqueness, and correctness of interpreter (via
structural induction)

Reading: CPL 5.4.2; PFPL 2.1-3, 2.6-7, 7.1



Course review Exam information Conclusions

Booleans, conditionals, types

Boolean expressions, equality tests, and conditionals

Typing judgment ` e : τ

Typing rules

Type soundness and static vs. dynamic typing

Reading: CPL 5.4.2, 6.1, 6.2; PFPL 4.1-4.2

Course review Exam information Conclusions

Variables and scope

Variables: symbols denoting other things

Substitution: replacing variables with expressions/values

Scope and binding: introducing and using variables

Free variables and α-equivalence

Impact of variables, scope and binding on evaluation and
typing (using let-binding to illustrate)

Reading: CPL 4.2; PFPL 1.2, 3.1-3.2

Course review Exam information Conclusions

Functions and recursion

Named (non-recursive) functions

Static vs. dynamic scope

Anonymous functions

Recursive functions

The function type, τ1 → τ2

Reading: CPL 4.2, 5.4.3; PFPL 8, 10.1-2

Course review Exam information Conclusions

Data structures

Pairs and pair types τ1 × τ2, which combine two or more
data structures

Variant/choice types τ1 + τ2, which represent a choice
between two or more data structures

Special cases unit, empty

Reading: CPL 5.4.4; PFPL 11.1, 12.1, 12.3



Course review Exam information Conclusions

Polymorphism and type inference

The idea of thinking of the same code as having many
different types

Parametric polymorphism: abstracting over a type
parameter (variable)

Modeling polymorphism using types ∀A.τ
High-level coverage of type inference, e.g. in Scala

[non-examinable] Hindley-Milner and let-bound
polymorphism

Reading: CPL 6.3-4; PFPL 20.1

Course review Exam information Conclusions

Records, variants and subtyping

Records, generating from pairs to structures with named
fields

Named variants, generalizing from binary choices to
named constructors (e.g. datatypes, case classes)

Type abbreviations and definitions

Subtyping (e.g. width subtyping, depth subtyping for
records)

Covariance and contravariance; subtyping for pair, choice,
function types

Reading: CPL 6.5; PFPL 11.2, 12.2, 13.1-3, 23.1-3

Course review Exam information Conclusions

Imperative programming

LWhile: a language with statements, variables, assignment,
conditionals and loops

Interpreting LWhile using state or store

Operational semantics

Structured vs unstructured programming

Other control flow constructs: goto, switch,
break/continue

Reading: CPL 4.4, 5.1-2, 8.1

Course review Exam information Conclusions

Programs, modules and interfaces

“Programs” as collections of definitions (with an entry
point)

Namespaces and packages: collecting related components
together, using “dot” syntax to structure names;
importing namespaces to allow local usage

The idea of abstract data types: a type with associated
operations, with hidden implementation

Modules (e.g. Scala’s objects) and interfaces (e.g.
Scala’s traits)

What it means for a module to “implement” an interface

Reading: CPL 9; PFPL 45.1-2, 46.1



Course review Exam information Conclusions

Objects and classes

Objects and how they differ from records or modules:
encapsulation of local state; self-reference

Classes and how they differ from interfaces; abstract
classes; dynamic dispatch

Instantiating classes to obtain objects

Inheritance of functionality between objects or classes;
multiple inheritance and its problems

Run-time type tests and coercions (isInstanceOf,
asInstanceOf)

Reading: CPL 10; 12.5, 13.1-2

Course review Exam information Conclusions

Object-oriented functional programming

Advanced OOP concepts:

inner classes, nested classes, anonymous classes/objects
Generics: Parameterized types and parametric
polymorphism; interaction with subtyping; type bounds
Traits as mixins: implementing multiple traits providing
orthogonal functionality; comparison with multiple
inheritance

Function types as interfaces

List comprehensions and map, flatMap and filter

functions

Reading: Odersky and Rompf, Unifying Functional and
Object-Oriented Programming with Scala, CACM, Vol.
57 No. 4, Pages 76-86, April 2014

Course review Exam information Conclusions

Small-step semantics and type safety

Small-step evaluation relation e 7→ e ′, and advantages
over big-step semantics for discussing type safety

Induction on derivations

Type soundness: decoposition into preservation and
progress lemmas

Representative cases for LIf

[non-examinable] Type soundness for LRec

Reading: CPL 6.1-2; PFPL 5.1-2,2.4,7.2, 6.1-2

Course review Exam information Conclusions

References and resource management

Reconciling references and mutability with a “functional”
language like LRec

Semantics and typing for references

Potential interactions with subtyping; problem with
reference / array types being covariant in e.g. Java

[non-examinable] How references + polymorphism can
violate type soundness

Resources and allocation/deallocation

Reading: CPL 5.4.5, 13.3; PFPL 36.1-3



Course review Exam information Conclusions

Evaluation strategies

Evaluation order; varying small-step “administrative”
rules to get left-to-right, right-to-left or unspecified
operand evaluation order

Evaluation strategies for function arguments (or more
generally for expressions bound to variables):

Call-by-value / eager
Call-by-name
Call-by-need / lazy evaluation

Interactions between evaluation strategies and side-effects

Lazy data structures and pure functional programming
(cf. Haskell)

Reading: CPL 7.3, 8.4; PFPL 37.1;

Course review Exam information Conclusions

Exceptions and control abstraction

Exceptions, illustrated in Java and Scala (throw,
try...catch...finally)

Exceptions more formally: typing and small-step
evaluation rules

Tail recursion

[non-examinable] Continuations

Reading: CPL 8.2-3; PFPL 28.1-3, 29.1-2

Course review Exam information Conclusions

Reading summary

The following sections of CPL are recommended to
provide high-level explanation and background:
1, 4.1-2, 4.4, 5.4, 6.1-5, 7.1, 7.3, 8.1-4, 9, 10, 12.5,
13.1-3

The following sections of PFPL are recommended to
complement the formal content of the course:
1, 2, 3.1-2, 4.1-2, 5.1-2, 6.1-2, 7.1-2, 8.1-2, 8.4, 10.1-2,
11.1-2, 12.1-3, 13.1-3, 20.1, 23.1-3, 28.1-3, 29.1, 36.1-3,
37.1, 37.3-4, 45.1-2, 46.1

In general, exam questions should be answerable using
ideas introduced/explained in lectures or tutorials

(please ask, if something mentioned in lecture slides is
unclear and not explained in associated readings)

Course review Exam information Conclusions

Exam Information



Course review Exam information Conclusions

Exam format

Written exam, 2 hours

Three (multi-part) questions

Answer Question 1 + EITHER Question 2 or 3

Closed-book (no notes, etc.), but...

Exam will not be about memorizing inference rules —
any rules needed to answer questions will be provided in a
supplement

Check University exam schedule!

Exam in December ⇐⇒ you are a visiting student
AND only here for semester 1
Exam in April/May ⇐⇒ you are here for full academic
year

Course review Exam information Conclusions

Expectations

Several typical kinds of questions...

Show how to use / apply some technical content of the
course (typing rules, evaluation, ) — possibly in a slightly
different setting than in lectures/assignments

Define concepts; explain differences/strengths/weaknesses
of differerent ideas in PL design

Show how to extrapolate or extend concepts or technical
ideas covered in lectures (possibly in ways covered in
more detail in reading or tutorials but not in lectures)

Explain and perform simple examples of inductive proofs
(no more complex than those covered in lectures)

Course review Exam information Conclusions

Sample exam

A sample exam is available now on course web page

Format: same as real exam

Questions have not gone through same process, so:

There may be errors/typos (hopefully not on real exam)
The difficulty level may not be calibrated to the real
exam (though I have tried to make it comparable)

In particular: just because a topic is covered/not covered
on the sample exam does NOT tell you it will be / will
not be covered on the real exam!

There will be a exam review session on Friday
December 4 at 2:10pm (usual lecture time/place, G.03,
50 George Square)

Course review Exam information Conclusions

Conclusions



Course review Exam information Conclusions

What didn’t we cover?

Lots! (and I may have tried to cover too much as it is)

Scala: implicits, richer pattern matching, concurrency, . . .

More generally:

language-support for concurrent programming
(synchronized, threads, locks, etc.)
language support for other computational models
(databases, parallel CPU, GPU, etc.)
Haskell-style type classes/overloading
Logic programming
Program verification / theorem proving
Analysis and optimisation
Implementation and compilation of modern languages
Virtual machines

Course review Exam information Conclusions

Other relevant courses

There is a lot more to Programming Languages than we
can cover in just one course...

The following UG4 courses cover more advanced topics
related to programming languages:

Advances in Programming Languages
Types and Semantics for Programming Languages
Secure Programming
Parallel Programming Languages and Systems
Compiler Optimisation
(maybe next year) Formal Verification

Many potential supervisors for PL-related UG4, MSc,
PhD projects in Informatics — ask if interested!

Course review Exam information Conclusions

Other programming languages resources

Scottish Programming Languages Seminar,
http://www.dcs.gla.ac.uk/research/spls/

EdLambda, Edinburgh’s mostly functional programming
meetup, http://www.edlambda.co.uk

Informatics PL Interest Group,
http://wcms.inf.ed.ac.uk/lfcs/research/groups-and-
projects/pl/programming-languages-interest-group

Major conferences: ICFP, POPL, PLDI, OOPSLA, ESOP,
CC

Major journals: ACM TOPLAS, Journal of Functional
Programming

Course review Exam information Conclusions

A final word

This has been the first time of teaching this course
Elements of Programming Languages

> 70 students registered (was optimistically expecting
20–30)

Although I know not everything has gone perfectly, I’ve
enjoyed it immensely

and hope you have also! (despite not everything going
perfectly)

Please do provide feedback on the course (both what
worked and what didn’t)

Thanks in advance on behalf of future EPL students!


