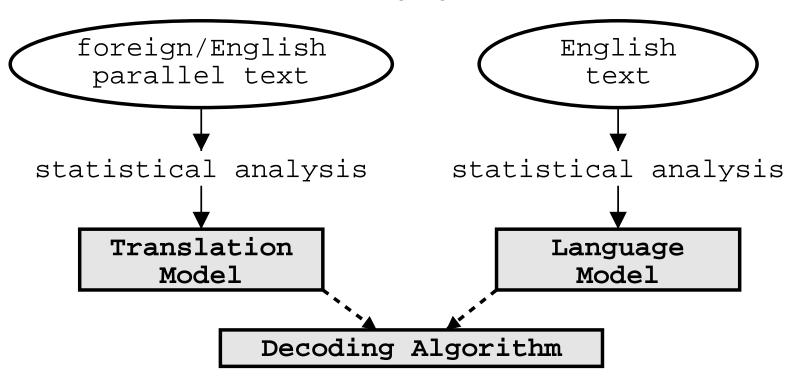
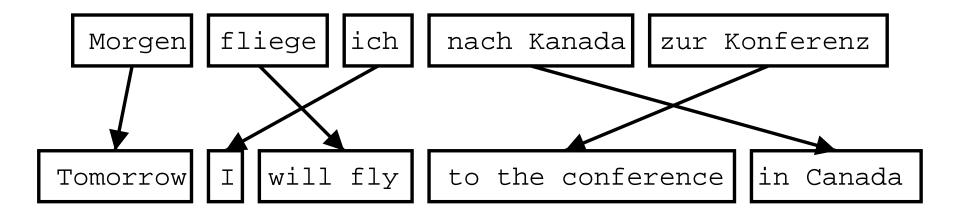
Data Intensive Linguistics Lecture 16 Machine translation (III): Decoding

Philipp Koehn


29 February 2008


Statistical Machine Translation

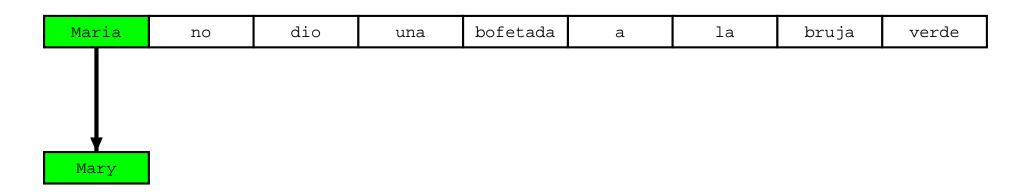
• Components: Translation model, language model, decoder

Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

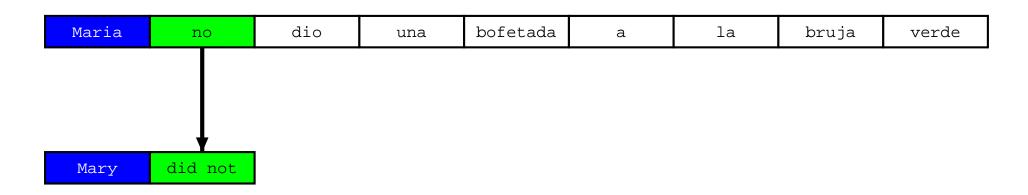
• Phrase Translations for "den Vorschlag":


English	ϕ (e $ $ f $)$	English	ϕ (e f)	
the proposal	0.6227	the suggestions	0.0114	
's proposal	0.1068	the proposed	0.0114	
a proposal	0.0341	the motion	0.0091	
the idea	0.0250	the idea of	0.0091	
this proposal	0.0227	the proposal ,	0.0068	
proposal	0.0205	its proposal	0.0068	
of the proposal	0.0159	it	0.0068	
the proposals	0.0159			

Maria	no	dio	una	bofetada	a	la	bruja	verde
-------	----	-----	-----	----------	---	----	-------	-------

- Build translation left to right
 - select foreign words to be translated

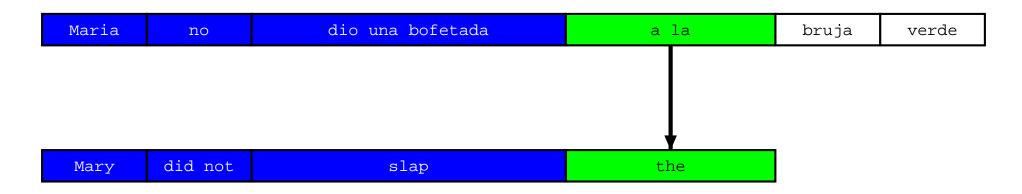
- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation

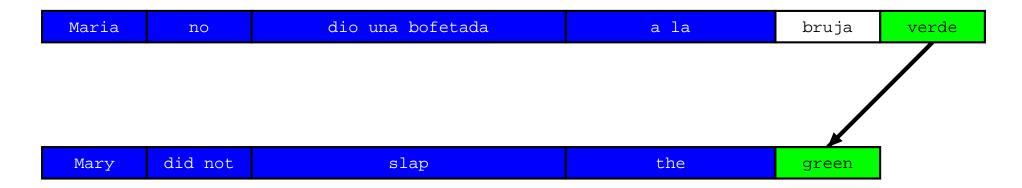


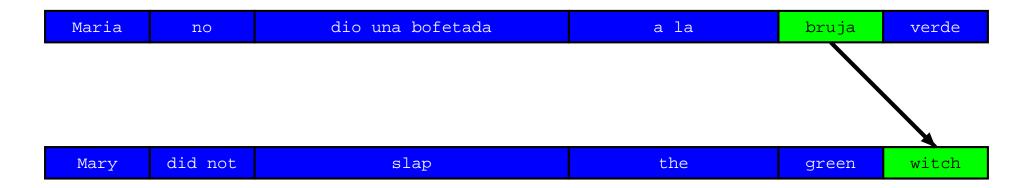
Maria	no	dio	una	bofetada	a	la	bruja	verde
-------	----	-----	-----	----------	---	----	-------	-------

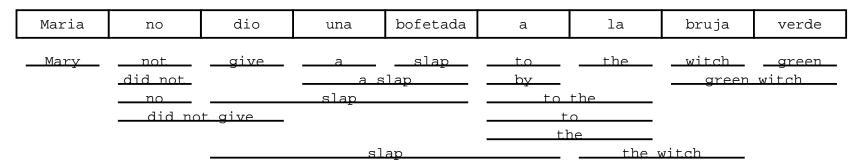
Mary

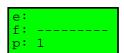
- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - mark foreign words as translated


• One to many translation

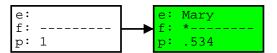

Many to one translation


• *Many to one* translation


• Reordering

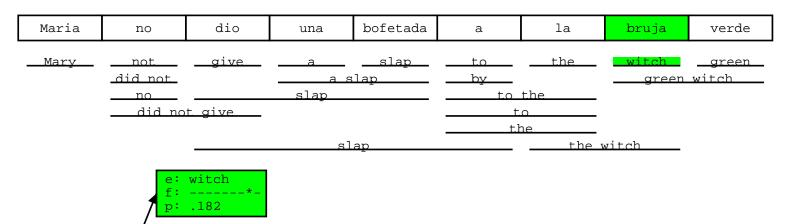

• Translation *finished*

Translation Options


- Look up *possible phrase translations*
 - many different ways to <u>segment</u> words into phrases
 - many different ways to translate each phrase

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not_ _did_not_	give		<u>slap</u>	t.o	<u>the</u>	_witch_ green	<u>green</u> witch
	<u>no</u>		slap		<u>to the</u>		J	
	<u>did no</u>	r give				ne		
		slap			the witch			

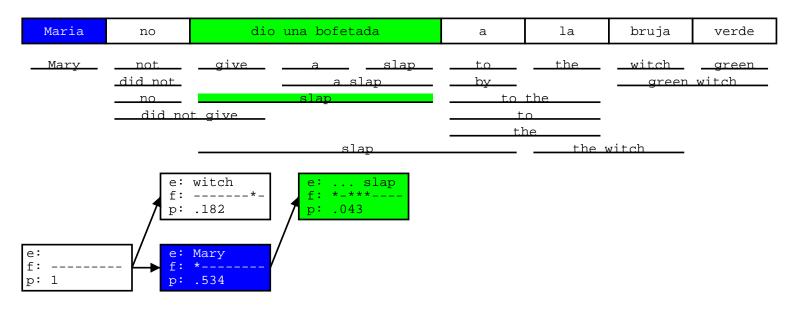
- Start with **empty hypothesis**
 - e: no English words
 - f: no foreign words covered
 - p: probability 1



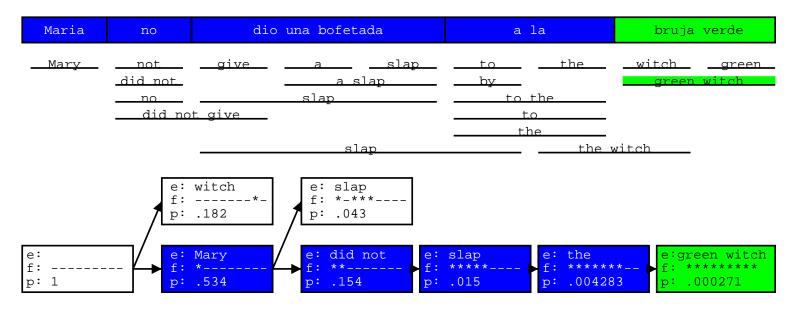
- Pick translation option
- Create *hypothesis*
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534

A Quick Word on Probabilities

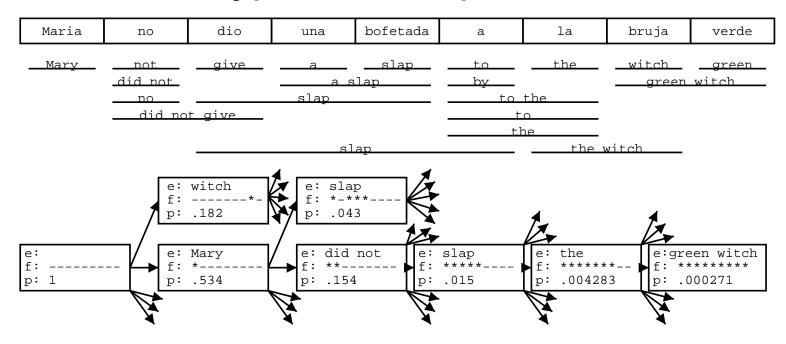
- Not going into detail here, but...
- Translation Model
 - phrase translation probability p(Mary|Maria)
 - reordering costs
 - phrase/word count costs
 - **—** ...
- Language Model
 - uses trigrams:
 - $p(Mary did not) = p(Mary|START) \times p(did|Mary,START) \times p(not|Mary did)$



• Add another *hypothesis*

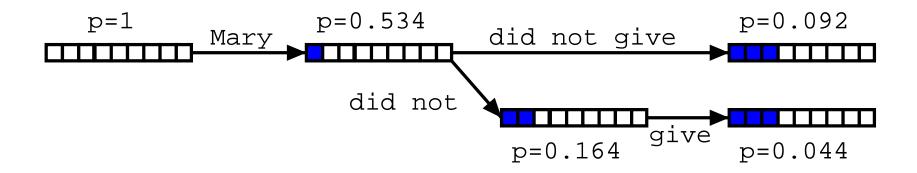

f: p: 1 e: Mary

p: .534



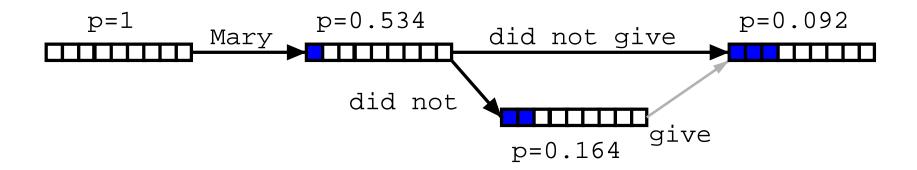
• Further *hypothesis expansion*

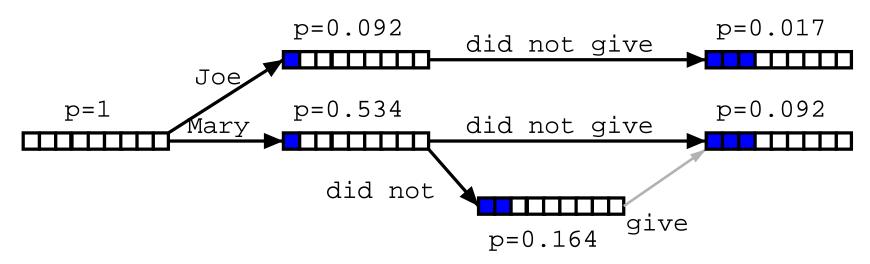
- ... until all foreign words covered
 - find best hypothesis that covers all foreign words
 - backtrack to read off translation



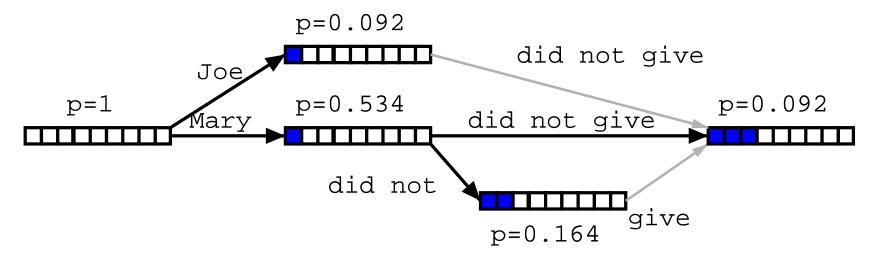
- Adding more hypothesis
- ⇒ *Explosion* of search space

Explosion of Search Space


- Number of hypotheses is *exponential* with respect to sentence length
- ⇒ Decoding is NP-complete [Knight, 1999]
- ⇒ Need to reduce search space
 - risk free: hypothesis recombination
 - risky: histogram/threshold pruning

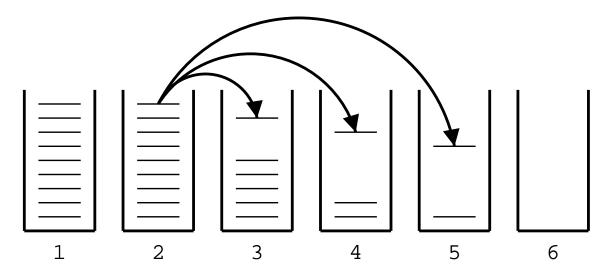


• Different paths to the *same* partial translation



- Different paths to the same partial translation
- *⇒* Combine paths
 - drop weaker path
 - keep pointer from weaker path (for lattice generation)

- Recombined hypotheses do *not* have to *match completely*
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)

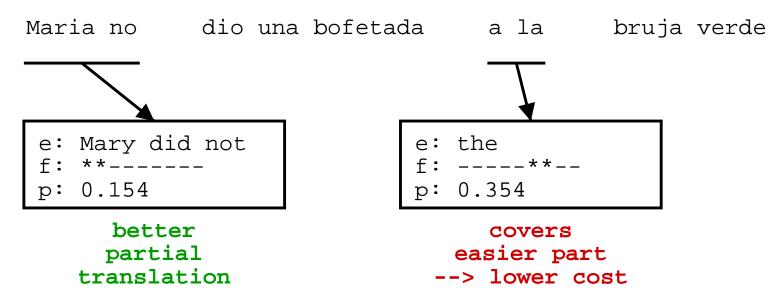


- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
- *⇒ Combine paths*

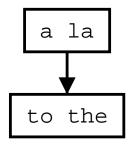
Pruning

- Hypothesis recombination is not sufficient
- ⇒ Heuristically discard weak hypotheses early
 - Organize Hypothesis in **stacks**, e.g. by
 - same foreign words covered
 - same number of foreign words covered
 - same number of English words produced
 - Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., n=100)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha=0.001$)

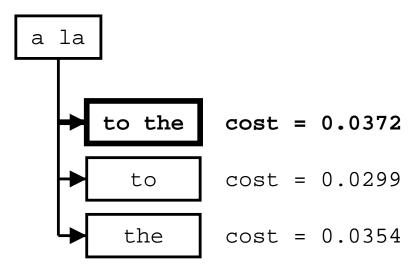
Hypothesis Stacks



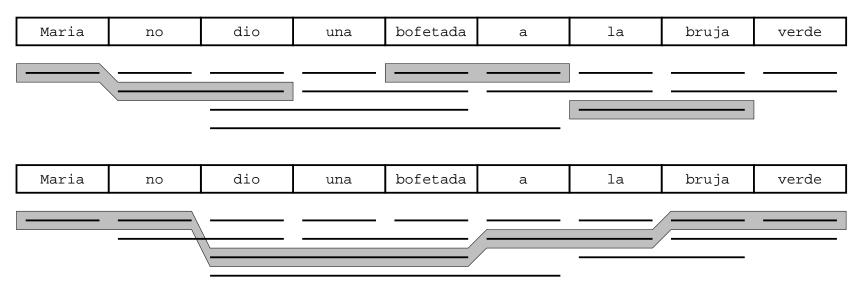
- Organization of hypothesis into stacks
 - here: based on *number of foreign words* translated
 - during translation all hypotheses from one stack are expanded
 - expanded Hypotheses are placed into stacks


Comparing Hypotheses

Comparing hypotheses with same number of foreign words covered

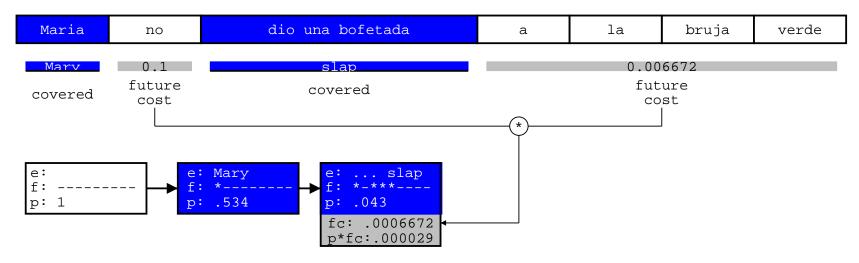

- Hypothesis that covers easy part of sentence is preferred
- ⇒ Need to consider future cost of uncovered parts

Future Cost Estimation


- Estimate cost to translate remaining part of input
- Step 1: estimate future cost for each translation option
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 - \rightarrow LM * TM = p(to) * p(the|to) * p(to the|a la)

Future Cost Estimation: Step 2

• Step 2: find *cheapest cost* among translation options

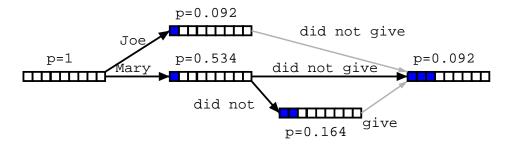

Future Cost Estimation: Step 3

- Step 3: find *cheapest future cost path* for each span
 - can be done *efficiently* by dynamic programming
 - future cost for every span can be pre-computed

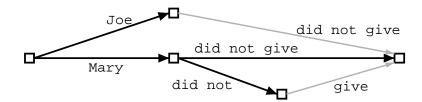
Future Cost Estimation: Application

- Use future cost estimates when *pruning* hypotheses
- For each uncovered contiguous span:
 - look up future costs for each maximal contiguous uncovered span
 - add to actually accumulated cost for translation option for pruning

A* search


- Pruning might drop hypothesis that lead to the best path (search error)
- A* search: safe pruning
 - future cost estimates have to be accurate or underestimates
 - lower bound for probability is established early by
 depth first search: compute cost for one complete translation
 - if cost-so-far and future cost are worse than *lower bound*, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough

Limits on Reordering


- Reordering may be limited
 - Monotone Translation: No reordering at all
 - Only phrase movements of at most n words
- Reordering limits speed up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality

Word Lattice Generation

- Search graph can be easily converted into a word lattice
 - can be further mined for n-best lists
 - → enables reranking approaches
 - \rightarrow enables discriminative training

Sample N-Best List

• Simple N-best list:

Translation | | | Reordering LM TM WordPenalty | | | Score this is a small house | | 0 -27.0908 -1.83258 -5 | | 1 -28.9234 this is a little house | | | 0 -28.1791 -1.83258 -5 | | | -30.0117 it is a small house | | 0 -27.108 -3.21888 -5 | | 1 -30.3268 it is a little house | | 0 -28.1963 -3.21888 -5 | | | -31.4152 this is an small house | | 0 -31.7294 -1.83258 -5 | | 33.562 it is an small house | | 0 -32.3094 -3.21888 -5 | | 1 -35.5283 this is an little house || 0 -33.7639 -1.83258 -5 || -35.5965 this is a house small | | | -3 -31.4851 -1.83258 -5 | | | -36.3176 this is a house little || -3 -31.5689 -1.83258 -5 || -36.4015 it is an little house | | 0 -34.3439 -3.21888 -5 | | 1 -37.5628 it is a house small | | | -3 -31.5022 -3.21888 -5 | | | -37.7211 this is an house small | | | -3 -32.8999 -1.83258 -5 | | | -37.7325 it is a house little | | | -3 -31.586 -3.21888 -5 | | | -37.8049 this is an house little | | 3 -32.9837 -1.83258 -5 | | 37.8163 the house is a little ||| -7 -28.5107 -2.52573 -5 ||| -38.0364 the is a small house | | 0 -35.6899 -2.52573 -5 | | | -38.2156 is it a little house | | | -4 -30.3603 -3.91202 -5 the house is a small | | | -7 -28.7683 -2.52573 -5 | | | -38.294 it 's a small house | | 0 -34.8557 -3.91202 -5 | | 1 -38.7677 this house is a little ||| -7 -28.0443 -3.91202 -5 ||| -38.9563 it 's a little house | | 0 -35.1446 -3.91202 -5 | | | -39.0566 this house is a small | | | -7 -28.3018 -3.91202 -5 | | | -39.2139

XML Markup

Er erzielte <NUMBER english='17.55'>17,55</NUMBER> Punkte .

- Add additional translation options
 - number translation
 - name translation
- Additional options
 - provide multiple translations
 - provide probability distribution along with translations
 - allow bypassing of provided translations