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POS tagging tools

e Three commonly used, freely available tools for tagging:

— TnT by Thorsten Brants (2000): Hidden Markov Model
http://www.coli.uni-saarland.de/ thorsten/tnt/

— Brill tagger by Eric Brill (1995): transformation based learning
http://www.cs.jhu.edu/~brill/

— MXPOST by Adwait Ratnaparkhi (1996): maximum entropy model
ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz

e All have similar performance (~96% on Penn Treebank English)
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Probabilities vs. rules
e \We examined two supervised learning methods for the tagging task
e HMMs: probabilities allow for graded decisions, instead of just yes/no
e Transformation based learning: more features can be considered

e We would like to combine both = maximum entropy models

— a large number of features can be defined
— features are weighted by their importance
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Features
e Each tagging decision for a word occurs in a specific context

e For tagging, we consider as context the history h;

— the word itself

— morphological properties of the word
— other words surrounding the word

— previous tags

e We can define a feature f; that allows us to learn how well a specific aspect
of histories h; is associated with a tag t;

PK EMNLP 31 January 2008



L School of _ o
- informatics

Features (2)

e We observe in the data patterns such as:

the word like has in 50% of the cases the tag VB

e Previously, in HMM models, this led us to introduce probabilities (as part of
the tag sequence model) such as

p(V Bllike) = 0.5
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Features (3)

e In a maximum entropy model, this information is captured by a feature

0 otherwise

fi(hi,t;) = {

e The importance of a feature f; is defined by a parameter \;
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Features (4)

e Features may consider morphology

1 if suffix(w;) ="ing" and t;, = VB
il ts) = { ()

0 otherwise

e Features may consider tag sequences

1 if ti_g = DET and tz’—l = NN and ti =VB

0 otherwise

fi(hi,t;) = {
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Features in Ratnaparkhi [1996]

frequent w; | w; = X

rare w; | X is prefix of w;, | X| <4

X is suffix of w;, | X| <4

w; contains a number

w; contains uppercase character
w; contains hyphen

all w; | i1 =X

ti—oti—1 = XY
W;—1 — X
Wi;—92 — X
Wit1 = X
Wi42 = X
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Log-linear model

e Features f; and parameters )\, are used to compute the probability p(h;,;):

phist:) = [T A"
J
e These types of models are called log-linear models, since they can be
reformulated into

log p(hs, t;) ij (hi, ti) log A,

e There are many learning methods for these models, maximum entropy is just
one of them
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Conditional probabilities

e We defined a model p(h;,t;) for the joint probability distribution for a history
h; and a tag t;

e Conditional probabilities can be computed straight-forward by

p(hi, ti)

pltilh) = > o (s, tir)
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Tagging a sequence

We want to tag a sequence wy, ..., w,

This can be decomposed into:

n

p(t1, o tulwr, ywy) = [ ] p(tilhi)

1=1

The history h; consist of all words w, ..., w,, and previous tags t1,...,%; 1

We cannot use Viterbi search = heuristic beam search is used (more on
beam search in a future lecture on machine translation)
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Questions for training

e Feature selection

— given the large number of possible features, which ones will be part of the
model?

— we do not want redundant features

— we do not want unreliable and rarely occurring features (avoid overfitting)

e Parameter values \;

— A; are positive real numbered values
— how do we set them?
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Feature selection

e Feature selection in Ratnaparkhi [1996]

— Feature has to occur 10 times in the training data

e Other feature selection methods

— use features with high mutual information
— add feature that reduces training error most, retrain
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Setting the parameter values \;: Goals

e The empirical expectation of a feature f; occurring in the training data is
defined by

B(f) =3 Filhart)
=1

e The model expectation of that feature occurring is

E(fj) = Zp(h, t)fj(ha t)
h,t

o We require that F(f;) = E(f;)
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Empirical expectation

e Consider the feature

1 if w; = [ike and ti =VB
0 otherwise

fi(hi, ;) = {

e Computing the empirical expectation E(fj):

— if there are 10,000 words (and tags) in the training data
— ... and the word like occurs with the tag VB 20 times

— ... then
10000 20

1 n
= — 1 ]’Li,tz 79 Z - 0002
n;fj( 10000 Z 1ih ~ 10000
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Model expectation

e We defined the model expectation of a feature occurring as

= Zp(hv t)fj(h7 t)
h,t

e Practically, we cannot sum over all possible histories h and tags ¢

e Instead, we compute the model expectation of the feature on the training data:

B(f) = =3 pltih) fi(h 1)
=1

Note: theoretically we have to sum over all ¢, but f;(h;,t) = O for all but one ¢
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Goals of maximum entropy training

e Recap: we require that E(f;) = E(f;), or

—ij hist;) Zp tlhs) f(hist)

e Otherwise we want maximum entropy, i.e. we do not want to introduce any
additional order into the model (Occam’s razor: simplest model is best)

e Entropy:
h,t
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Improved Iterative Scaling [Berger, 1993]

Input: Feature functions f1, ..., f,,, empirical distribution p(z,vy)
Output: Optimal parameter values A\, ..., \,,

1. Start with \; =0 for all : € {1,2,...,n}

2. Do for each i € {1,2,....,n}:

a. A\ =& logEEfzg

b. Update>\ — A\ + AN\

3. Go to step 2 if not all the \; have converged

Note: This algorithm requires that V¢, h: ). fi(t,h) = C, which can be ensured
with an additional filler feature
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