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Recap

• Given word counts we can estimate a probability distribution:

P (w) = count(w)P
w′ count(w′)

• Another useful concept is conditional probability

p(w2|w1)

• Chain rule:

p(w1, w2) = p(w1) p(w2|w1)

• Bayes rule:

p(x|y) = p(y|x) p(x)
p(y)
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Expectation

• We introduced the concept of a random variable X

prob(X = x) = p(x)

• Example: Roll of a dice. There is a 1
6 chance that it will be 1, 2, 3, 4, 5, or 6.

• We define the expectation E(X) of a random variable as:

E(X) =
∑

x p(x) x

• Roll of a dice:

E(X) = 1
6 × 1 + 1

6 × 2 + 1
6 × 3 + 1

6 × 4 + 1
6 × 5 + 1

6 × 6 = 3.5
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Variance

• Variance is defined as

V ar(X) = E((X − E(X))2) = E(X2)− E2(X)
V ar(X) =

∑
x p(x) (x− E(X))2

• Intuitively, this is a measure how far events diverge from the mean (expectation)

• Related to this is standard deviation, denoted as σ.

V ar(X) = σ2

E(X) = µ
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Variance (2)

• Roll of a dice:

V ar(X) =
1
6
(1− 3.5)2 +

1
6
(2− 3.5)2 +

1
6
(3− 3.5)2

+
1
6
(4− 3.5)2 +

1
6
(5− 3.5)2 +

1
6
(6− 3.5)2

=
1
6
((−2.5)2 + (−1.5)2 + (−0.5)2 + 0.52 + 1.52 + 2.52)

=
1
6
(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25)

= 2.917
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Standard distributions

• Uniform: all events equally likely

– ∀x, y : p(x) = p(y)
– example: roll of one dice

• Binomial: a serious of trials with only only two outcomes

– probability p for each trial, occurrence r out of n times:
b(r;n, p) =

(
n
r

)
pr(1− p)n−r

– a number of coin tosses
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Standard distributions (2)

• Normal: common distribution for continuous values

– value in the range [− inf, x], given expectation µ and standard deviation σ:

n(x;µ, σ) = 1√
2πµ

e−(x−µ)2/(2σ2)

– also called Bell curve, or Gaussian
– examples: heights of people, IQ of people, tree heights, ...
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Estimation revisited

• We introduced last lecture an estimation of probabilities based on frequencies:

P (w) = count(w)P
w′ count(w′)

• Alternative view: Bayesian: what is the most likely model given the data

p(M |D)

• Model and data are viewed as random variables

– model M as random variable
– data D as random variable
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Bayesian estimation

• Reformulation of p(M |D) using Bayes rule:

p(M |D) = p(D|M) p(M)
p(D)

argmaxM p(M |D) = argmaxM p(D|M) p(M)

• p(M |D) answers the question: What is the most likely model given the data

• p(M) is a prior that prefers certain models (e.g. simple models)

• The frequentist estimation of word probabilities p(w) is the same as Bayesian
estimation with a uniform prior (no bias towards a specific model), hence it is
also called the maximum likelihood estimation
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Entropy

• An important concept is entropy:

H(X) =
∑

x−p(x) log2 p(x)

• A measure for the degree of disorder
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Entropy example

p(a) = 1

One event

H(X) = − 1 log2 1

= 0
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Entropy example

p(a) = 0.5
p(b) = 0.5

2 equally likely events:

H(X) = − 0.5 log2 0.5− 0.5 log2 0.5

= − log2 0.5

= 1
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Entropy example

p(a) = 0.25
p(b) = 0.25
p(c) = 0.25
p(d) = 0.25

4 equally likely events:

H(X) = − 0.25 log2 0.25− 0.25 log2 0.25

− 0.25 log2 0.25− 0.25 log2 0.25

= − log2 0.25

= 2
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Entropy example

p(a) = 0.7
p(b) = 0.1
p(c) = 0.1
p(d) = 0.1

4 equally likely events, one more likely
than the others:

H(X) = − 0.7 log2 0.7− 0.1 log2 0.1

− 0.1 log2 0.1− 0.1 log2 0.1

= − 0.7 log2 0.7− 0.3 log2 0.1

= − 0.7×−0.5146− 0.3×−3.3219

= 0.36020 + 0.99658

= 1.35678
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Entropy example

(X)

p(a) = 0.97
p(b) = 0.01
p(c) = 0.01
p(d) = 0.01

4 equally likely events, one much more
likely than the others:

H(X) = − 0.97 log2 0.97− 0.01 log2 0.01

− 0.01 log2 0.01− 0.01 log2 0.01

= − 0.97 log2 0.97− 0.03 log2 0.01

= − 0.97×−0.04394− 0.03×−6.6439

= 0.04262 + 0.19932

= 0.24194

PK EMNLP 10 January 2008



15

Intuition behind entropy

• A good model has low entropy

→ it is more certain about outcomes

• For instance a translation table

e f p(e|f)
the der 0.8
that der 0.2

is better than

e f p(e|f)
the der 0.02
that der 0.01
... ... ...

• A lot of statistical estimation is about reducing entropy
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Information theory and entropy

• Assume that we want to encode a sequence of events X

• Each event is encoded by a sequence of bits

• For example

– Coin flip: heads = 0, tails = 1
– 4 equally likely events: a = 00, b = 01, c = 10, d = 11
– 3 events, one more likely than others: a = 0, b = 10, c = 11
– Morse code: e has shorter code than q

• Average number of bits needed to encode X ≥ entropy of X
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The entropy of English

• We already talked about the probability of a word p(w)

• But words come in sequence. Given a number of words in a text, can we guess
the next word p(wn|w1, ..., wn−1)?

• Example: Newspaper article
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Entropy for letter sequences
Assuming a model with a limited window size

Model Entropy
0th order 4.76
1st order 4.03
2nd order 2.8

human, unlimited 1.3
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