Energy-Aware Computing

Lecture 13: Self-timed systems
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Outline

* Description of self-timed circuit
characteristics

* Potential advantages and problems
 Handshake protocols

» Data representation and Indication
* Pipelines

» Circuit types
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Self-timed systems

» Self-timed or asynchronous systems
are systems which do not use a global
clock signal to signify when data are
ready

* Local, handshake signals are used
instead

— A request-acknowledge protocol is used
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Potential advantages

Low power consumption

— No clock tree to drive
» Up to 40% of total power

— Automatic input guarding
* No new inputs, no transitions
Speed

— Typical rather than worst case delays

Modularity

— previously designed units can be put together as
long as they use the same protocol - they don't
need to work at the same clock rate

Low electromagnetic interference

— Activity more spread out - not everything happens
at clock edges
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Problems

* Little support from EDA tools
* Problems with testing

« Speed/power advantages marginal or
proven in niche applications only

* Harder to design
— Glitches, hazards need to be considered
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Example: pipeline
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To return to zero or not?

 Handshake protocols can be of two
types:
— 2-phase (or non-return to zero)
— 4-phase (return to zero)
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When are data ready?

* Match the delay with a tracking circuit
— Implied in previous figures
— Called bundled data
— Very similar to synchronous circuits

* Encode “readiness” in the data using
special codes
— Called delay-insensitive codes

* E.g. dual-rail code: 2 wires per bit At, Af

—-10=1, 01 =0, 00 = not ready (spacer), 11
= illegal/unused
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Indication

Asynchronous circuits cannot tolerate hazards
In most cases:

— If a signal changes should the next gate act on it or
not?

When an OR gate changes from 1to 0
— We know both inputs are 0O

When is changes from 0 to 1
— We can’t determine the values at both inputs

OR gates indicates only when both inputs are 0
AND gates indicate only when both inputs are 1
XOR gates indicate all single input changes
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Muller C-element

* |In many cases we need to know when both
inputs are 0 and when both are 1

a b|y
0 0]0
o :—Cj*_ y 0 1 | nochange
b — 1 O | nochange
1 1)1
 All handshaking requires cyclic transitions

between 1, 0
— Controllers use C-elements
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Muller pipeline
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Delay insensitive pipelines
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"All valid" ~ "All empty"

For multiple inputs,
completion detection is ®
more complicated:
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DI logic operations
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Timing assumptions

 Circuit implementation depends on
timing assumptions
* Delay insensitive circuits

— Positive, bounded but unknown delays in
all gates and wires

— Only inverters and C elements!

e Quasi-DI circuits

— As above, but some wire forks are
Isochronic
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