Energy-Aware Computing

Lecture 13: Self-timed systems

UoE/Informatics Energy-aware computing

Outline

* Description of self-timed circuit
characteristics

* Potential advantages and problems
 Handshake protocols

» Data representation and Indication
* Pipelines

» Circuit types

UoE/Informatics Energy-aware computing

Self-timed systems

» Self-timed or asynchronous systems
are systems which do not use a global
clock signal to signify when data are
ready

* Local, handshake signals are used
instead

— A request-acknowledge protocol is used

UoE/Informatics Energy-aware computing

Potential advantages

Low power consumption

— No clock tree to drive
» Up to 40% of total power

— Automatic input guarding
* No new inputs, no transitions
Speed

— Typical rather than worst case delays

Modularity

— previously designed units can be put together as
long as they use the same protocol - they don't
need to work at the same clock rate

Low electromagnetic interference

— Activity more spread out - not everything happens
at clock edges

UoE/Informatics Energy-aware computing

Problems

* Little support from EDA tools
* Problems with testing

« Speed/power advantages marginal or
proven in niche applications only

* Harder to design
— Glitches, hazards need to be considered

UoE/Informatics Energy-aware computing

Example: pipeline

CLK { >0—T—1 >0
[
clock gate signal

V V V V
R1 R2 R3 | | R4
. Ack]]]
|CTL |CTL |CTL |CTL
Req
V V V V
R1 |Data | R2 | R3 | R4

UoE/Informatics Energy-aware computing

To return to zero or not?

 Handshake protocols can be of two
types:
— 2-phase (or non-return to zero)
— 4-phase (return to zero)

Req et ” |, | Req -
Ack il A Ack | |
Data & W, Data d ~)

UoE/Informatics Energy-aware computing

When are data ready?

* Match the delay with a tracking circuit
— Implied in previous figures
— Called bundled data
— Very similar to synchronous circuits

* Encode “readiness” in the data using
special codes
— Called delay-insensitive codes

* E.g. dual-rail code: 2 wires per bit At, Af

—-10=1, 01 =0, 00 = not ready (spacer), 11
= illegal/unused

UoE/Informatics Energy-aware computing

Indication

Asynchronous circuits cannot tolerate hazards
In most cases:

— If a signal changes should the next gate act on it or
not?

When an OR gate changes from 1to 0
— We know both inputs are 0O

When is changes from 0 to 1
— We can’t determine the values at both inputs

OR gates indicates only when both inputs are 0
AND gates indicate only when both inputs are 1
XOR gates indicate all single input changes

UoE/Informatics Energy-aware computing

Muller C-element

* |In many cases we need to know when both
inputs are 0 and when both are 1

a b|y
0 0]0
o :—Cj*_ y 0 1 | nochange
b — 1 O | nochange
1 1)1
 All handshaking requires cyclic transitions

between 1, 0
— Controllers use C-elements

UoE/Informatics Energy-aware computing

Muller pipeline

Ack

Left co

Ack

Fieq Req

- Ack
C . - ; C * o
Reqg “ | Req
Cli-1] Cli]

Ack

-

C)

Ack

.

Reqg

Cli+1]

Ack

Req

Right

-

i C[i-1] = C[i+1] then C[i:=Cli-1]

Ack

-

-

Req
—_—

Data

UoE/Informatics

EN EN

Latch Latch

Energy-aware computing

T = N

_ Ack

ol

EN Data
Latch

Delay insensitive pipelines

Ack
- Ack
d.t C C C d.t
+ + -
d.f C C , C d.f

"All valid" ~ "All empty"

For multiple inputs,
completion detection is ®
more complicated:

UoE/Informatics Energy-aware computing

DI logic operations

a >
AND —= Y
b - a.f C-E?O
a.t L~/
o1 —
a b | yf oyt - _Cm i A
E E| 0 0 Ta)
| | b.f ——C/
' NO CHANGE . 11
F Fl 1 0 bt [1cC) =y
F T 1 0 ' '
T F| 1 0
T 7| 0 1

UoE/Informatics Energy-aware computing

Timing assumptions

 Circuit implementation depends on
timing assumptions
* Delay insensitive circuits

— Positive, bounded but unknown delays in
all gates and wires

— Only inverters and C elements!

e Quasi-DI circuits

— As above, but some wire forks are
Isochronic

UoE/Informatics Energy-aware computing

