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Logical clocks

• Why do we need clocks? 
– To determine when one thing happened 

before another 

• Can we determine that without using a 
“clock” at all? 
– Then we don’t need to worry about 

synchronisation, millisecond errors etc..
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Happened before

• a⟶b : a happened before b 
– If a and b are successive events in same 

process then a⟶b 

– Send before receive 
• If a : “send” event of message m 
• And b : “receive” event of message m 

• Then a⟶b 

– Transitive: a⟶b and b⟶c ⟹a⟶c
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Example
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Example

• Events without a happened before 
relation are “concurrent” 

• e1⟶e2, e3⟶e4,e1⟶e5, e5||e2 
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Example

• Events without a happened before 
relation are “concurrent” 

• Happened before is a partial ordering
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Happened before & causal order

• Happened before ==  
could have caused/influenced 

• Preserves causal relations 
• Implies a partial order 
– Implies time ordering between certain pairs 

of events 
– Does not imply anything about ordering 

between concurrent events
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Logical clocks

• Idea: Use a counter at each process 
• Increment after each event  
• Can also increment when there are no events 
– Eg. A clock 

• An actual clock can be thought of as such an 
event counter 

• It counts the states of the process 
• Each event has an associated time: The count 

of the state when the event happened
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Lamport clocks

• Keep a logical clock (counter) 
• Send it with every message 
• On receiving a message, set own clock to   

max({own counter, message counter}) + 1 
• For any event e, write c(e) for the logical time 
• Property:  
– If a⟶b, then c(a) < c(b) 

– If a || b, then no guarantees
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Lamport clocks: Example
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Concurrency and Lamport clocks

• If e1⟶e2 
– Then no Lamport clock C exists with C(e1)== 

C(e2)
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Concurrency and Lamport clocks

• If e1⟶e2 
– Then no Lamport clock C exists with C(e1)== 

C(e2) 

• If e1||e2, then there exists a Lamport 
clock C such that C(e1)== C(e2)
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The Purpose of Lamport Clocks
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The Purpose of Lamport Clocks

• If a⟶b, then c(a) < c(b) 

• If we order all events by their Lamport 
clock times 
–We get a partial order, since some events 

have same time 
– The partial order satisfies “causal relations”
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The purpose of Lamport clocks

• Suppose there are events in different 
machines 
– Transactions, money in/out, file read, write, 

copy 

• An ordering of events that guarantees 
preserving causality
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Total order from Lamport clocks

• If event e occurs in process j at time C(e) 
– Give it a time (C(e), j) 
– Order events by (C, process id) 
– For events e1 in process i, e2 in process j: 
• If C(e1)<C(e2), then e1<e2 
• Else if C(e1)==C(e2) and i<j, then e1<e2 

• Leslie Lamport. Time, clocks and ordering 
of events in a distributed system. 
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Vector Clocks

• We want a clock such that: 
– If a⟶b, then c(a) < c(b) 

– AND 

– If c(a) < c(b), then a⟶b 

– Ref: Coulouris et al.,  V. Garg
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Vector Clocks

• Each process i maintains a vector Vi 

• Vi has n elements 
– keeps clock Vi[j] for every other process j 

– On every local event: Vi[i] =Vi[i]+1 

– On sending a message, i sends entire Vi 
– On receiving a message at process j: 
• Takes max element by element 
• Vj[k] = max(Vj[k], Vi[k]), for k = 1,2,…,n 

• And adds 1 to Vj[j]
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Example
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Another Example
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Comparing Timestamps

• V = V’ iff V[i] == V’[i] for i=1,2,…,n 
• V < V’ iff V[i]  < V’[i] for i=1,2,…,n
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Comparing Timestamps

• V = V’ iff V[i] == V’[i] for i=1,2,…,n 
• V < V’ iff V[i]  < V’[i] for i=1,2,…,n 

• For events a, b and vector clock V 
– a⟶b iff  V(a) < V(b) 

• Is this a total order?
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Comparing Timestamps

• V = V’ iff V[i] == V’[i] for i=1,2,…,n 
• V ≤ V’ iff V[i]  ≤ V’[i] for i=1,2,…,n 

• For events a, b and vector clock V 
– a⟶b iff  V(a) ≤ V(b) 

• Two events are concurrent if  
– Neither V(a) ≤ V(b) nor V(b) ≤ V(a)
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Vector Clock Examples

• (1,2,1) ≤ (3,2,1) but (1,2,1)     (3,1,2) 

• Also (3,1,2)     (1,2,1)  
• No ordering exists
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Vector Clocks

• What are the drawbacks? 

• What is the communication complexity?
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Vector Clocks

• What are the drawbacks? 
– Entire vector is sent with message 
– All vector elements (n) have to be checked on 

every message 

• What is the communication complexity? 
– Ω(n) per message 
– Increases with time
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Logical Clocks

• There is no way to have perfect 
knowledge on ordering of events 
– A “true” ordering may not exist.. 

– Logical and vector clocks give us a way to 
have ordering consistent with causality
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Distributed Snapshots

• Take a “snapshot” of a system 
• E.g. for backup: If system fails, it can start up 

from a meaningful state 

• Problem:  
– Imagine a sky filled with birds. The sky is too large 

to cover in a single picture.  
– We want to take multiple pictures that are 

consistent in a suitable sense 
• Eg. We can correctly count the number of birds from 

the snapshot
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Distributed Snapshots

• Global state: 
– State of all processes and communication channels 

• Consistent cuts: 
– A set of states of all processes is a consistent cut 

if: 
– For any states s, t in the cut, s||t 

• If a⟶b, then the following is not allowed: 
– b is before the cut, a is after the cut
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Consistent Cut
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Distributed Snapshot Algorithm

• Ask each process to record its state 
• The set of states must be a consistent cut 

• Assumptions: 
– Communication channels are FIFO 
– Processes communicate only with neighbours 
–We assume for now that everyone is 

neighbour of everyone 
– Processes do not fail
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Global Snapshot  
Chandy and Lamport Algorithm

• One process initiates snapshot and sends a 
marker 

• Marker is the boundary between “before” 
and “after” snapshot
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Global snapshot 
Chandy and Lamport algorithm

• Marker send rule (Process i) 
1.Process i records its state 
2.On every outgoing channel where a marker has not been sent: 

• i sends a marker on the channel  
• before sending any other message 

• Marker receive rule 
(Process i receives marker on channel C) 
– If i has not received the marker before 

• Record state of i 
• Record state of C as empty 
• Follow marker send rule 

– Else: 
• Record the state of C as the set of messages received on C since 

recording i’s state and before receiving marker on C 

• Algorithm stops when all processes have received 
marker on all incoming channels
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Complexity

• Message? 

• Time?
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