
Distributed Systems 
 

Clocks, Ordering, and Global Snapshots

Björn Franke
2016/2017

University of Edinburgh

Distributed Systems, Edinburgh,
2016/2017

Logical clocks

• Why do we need clocks?
– To determine when one thing happened

before another

• Can we determine that without using a
“clock” at all?
– Then we don’t need to worry about

synchronisation, millisecond errors etc..

2

Distributed Systems, Edinburgh,
2016/2017

Happened before

• a⟶b : a happened before b
– If a and b are successive events in same

process then a⟶b

– Send before receive
• If a : “send” event of message m
• And b : “receive” event of message m

• Then a⟶b

– Transitive: a⟶b and b⟶c ⟹a⟶c

3

Distributed Systems, Edinburgh,
2016/2017

Example

4

e1 e2

e3

e5e4

p1

p2

p3

Distributed Systems, Edinburgh,
2016/2017

Example

• Events without a happened before
relation are “concurrent”

• e1⟶e2, e3⟶e4,e1⟶e5, e5||e2

5

e1 e2

e3

e5e4

p1

p2

p3

Distributed Systems, Edinburgh,
2016/2017

Example

• Events without a happened before
relation are “concurrent”

• Happened before is a partial ordering

6

e1 e2

e3

e5e4

p1

p2

p3

Distributed Systems, Edinburgh,
2016/2017

Happened before & causal order

• Happened before ==  
could have caused/influenced

• Preserves causal relations
• Implies a partial order
– Implies time ordering between certain pairs

of events
– Does not imply anything about ordering

between concurrent events

7

Distributed Systems, Edinburgh,
2016/2017

Logical clocks

• Idea: Use a counter at each process
• Increment after each event
• Can also increment when there are no events
– Eg. A clock

• An actual clock can be thought of as such an
event counter

• It counts the states of the process
• Each event has an associated time: The count

of the state when the event happened

8

Distributed Systems, Edinburgh,
2016/2017

Lamport clocks

• Keep a logical clock (counter)
• Send it with every message
• On receiving a message, set own clock to

max({own counter, message counter}) + 1
• For any event e, write c(e) for the logical time
• Property:
– If a⟶b, then c(a) < c(b)

– If a || b, then no guarantees

9

Distributed Systems, Edinburgh,
2016/2017

Lamport clocks: Example

10

Distributed Systems, Edinburgh,
2016/2017

Concurrency and Lamport clocks

• If e1⟶e2
– Then no Lamport clock C exists with C(e1)==

C(e2)

11

Distributed Systems, Edinburgh,
2016/2017

Concurrency and Lamport clocks

• If e1⟶e2
– Then no Lamport clock C exists with C(e1)==

C(e2)

• If e1||e2, then there exists a Lamport
clock C such that C(e1)== C(e2)

12

Distributed Systems, Edinburgh,
2016/2017

The Purpose of Lamport Clocks

13

Distributed Systems, Edinburgh,
2016/2017

The Purpose of Lamport Clocks

• If a⟶b, then c(a) < c(b)

• If we order all events by their Lamport
clock times
–We get a partial order, since some events

have same time
– The partial order satisfies “causal relations”

14

Distributed Systems, Edinburgh,
2016/2017

The purpose of Lamport clocks

• Suppose there are events in different
machines
– Transactions, money in/out, file read, write,

copy

• An ordering of events that guarantees
preserving causality

15

Distributed Systems, Edinburgh,
2016/2017

Total order from Lamport clocks

• If event e occurs in process j at time C(e)
– Give it a time (C(e), j)
– Order events by (C, process id)
– For events e1 in process i, e2 in process j:
• If C(e1)<C(e2), then e1<e2
• Else if C(e1)==C(e2) and i<j, then e1<e2

• Leslie Lamport. Time, clocks and ordering
of events in a distributed system.

16

Distributed Systems, Edinburgh,
2016/2017

Vector Clocks

• We want a clock such that:
– If a⟶b, then c(a) < c(b)

– AND

– If c(a) < c(b), then a⟶b

– Ref: Coulouris et al., V. Garg

17

Distributed Systems, Edinburgh,
2016/2017

Vector Clocks

• Each process i maintains a vector Vi

• Vi has n elements
– keeps clock Vi[j] for every other process j

– On every local event: Vi[i] =Vi[i]+1

– On sending a message, i sends entire Vi
– On receiving a message at process j:
• Takes max element by element
• Vj[k] = max(Vj[k], Vi[k]), for k = 1,2,…,n

• And adds 1 to Vj[j]

18

Distributed Systems, Edinburgh,
2016/2017

Example

19

Another Example

20

Distributed Systems, Edinburgh,
2016/2017

Comparing Timestamps

• V = V’ iff V[i] == V’[i] for i=1,2,…,n
• V < V’ iff V[i] < V’[i] for i=1,2,…,n

21

Distributed Systems, Edinburgh,
2016/2017

Comparing Timestamps

• V = V’ iff V[i] == V’[i] for i=1,2,…,n
• V < V’ iff V[i] < V’[i] for i=1,2,…,n

• For events a, b and vector clock V
– a⟶b iff V(a) < V(b)

• Is this a total order?

22

Distributed Systems, Edinburgh,
2016/2017

Comparing Timestamps

• V = V’ iff V[i] == V’[i] for i=1,2,…,n
• V ≤ V’ iff V[i] ≤ V’[i] for i=1,2,…,n

• For events a, b and vector clock V
– a⟶b iff V(a) ≤ V(b)

• Two events are concurrent if
– Neither V(a) ≤ V(b) nor V(b) ≤ V(a)

23

Distributed Systems, Edinburgh,
2016/2017

Vector Clock Examples

• (1,2,1) ≤ (3,2,1) but (1,2,1) (3,1,2)

• Also (3,1,2) (1,2,1)
• No ordering exists

24

Distributed Systems, Edinburgh,
2016/2017

Vector Clocks

• What are the drawbacks?

• What is the communication complexity?

25

Distributed Systems, Edinburgh,
2016/2017

Vector Clocks

• What are the drawbacks?
– Entire vector is sent with message
– All vector elements (n) have to be checked on

every message

• What is the communication complexity?
– Ω(n) per message
– Increases with time

26

Distributed Systems, Edinburgh,
2016/2017

Logical Clocks

• There is no way to have perfect
knowledge on ordering of events
– A “true” ordering may not exist..

– Logical and vector clocks give us a way to
have ordering consistent with causality

27

Distributed Systems, Edinburgh,
2016/2017

Distributed Snapshots

• Take a “snapshot” of a system
• E.g. for backup: If system fails, it can start up

from a meaningful state

• Problem:
– Imagine a sky filled with birds. The sky is too large

to cover in a single picture.
– We want to take multiple pictures that are

consistent in a suitable sense
• Eg. We can correctly count the number of birds from

the snapshot

28

Distributed Systems, Edinburgh,
2016/2017

Distributed Snapshots

• Global state:
– State of all processes and communication channels

• Consistent cuts:
– A set of states of all processes is a consistent cut

if:
– For any states s, t in the cut, s||t

• If a⟶b, then the following is not allowed:
– b is before the cut, a is after the cut

29

Distributed Systems, Edinburgh,
2016/2017

Consistent Cut

30

Distributed Systems, Edinburgh,
2016/2017

Distributed Snapshot Algorithm

• Ask each process to record its state
• The set of states must be a consistent cut

• Assumptions:
– Communication channels are FIFO
– Processes communicate only with neighbours
–We assume for now that everyone is

neighbour of everyone
– Processes do not fail

31

Distributed Systems, Edinburgh,
2016/2017

Global Snapshot  
Chandy and Lamport Algorithm

• One process initiates snapshot and sends a
marker

• Marker is the boundary between “before”
and “after” snapshot

32

Distributed Systems, Edinburgh,
2016/2017

Global snapshot
Chandy and Lamport algorithm

• Marker send rule (Process i)
1.Process i records its state
2.On every outgoing channel where a marker has not been sent:

• i sends a marker on the channel
• before sending any other message

• Marker receive rule 
(Process i receives marker on channel C)
– If i has not received the marker before

• Record state of i
• Record state of C as empty
• Follow marker send rule

– Else:
• Record the state of C as the set of messages received on C since

recording i’s state and before receiving marker on C

• Algorithm stops when all processes have received
marker on all incoming channels

33

Distributed Systems, Edinburgh,
2016/2017

Complexity

• Message?

• Time?

34

