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Distributed snapshots
• Take a “snapshot” of a system
• E.g. for backup: If system fails, it can start up from 

a meaningful state

• Problem: 
– Imagine a sky filled with birds. The sky is too large to 

cover in a single picture. 
– We want to take multiple pictures that are consistent 

in a suitable sense
• Eg. We can correctly count the number of birds from the 

snapshot
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Events and states

• Every process goes through alternate 
sequence of states and events

• It is enough to count the states for  correct 
clock sequence
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Events and states

• Happened before and concurrent relations for 
states are defined similarly
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Distributed snapshots
• Global state:
– State of all processes
– And state of all communication channels

• What message it is carrying

• Consistent cuts:
– A set of states of all processes is a consistent cut if:
– For any states s, t in the cut, s||t

• If a⟶b, then the following is not allowed:
– b is before the cut, a is after the cut
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Consistent cut
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Distributed snapshot algorithm

• Find a set of states: one for each process
– Ask each process to record its state

• The set of states must be a consistent cut

• Assumptions:
– Communication channels are FIFO
– Processes communicate only with neighbors
– (We assume for now that everyone is neighbor of 

everyone)
– Processes do not fail
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Global snapshot: Chandy and Lamport
algorithm

• One process initiates snapshot and sends a 
marker

• Marker is the boundary between “before” and 
“after” the snapshot

Distributed Systems, Edinburgh, 2020 8

p1

p2

2 3

1 3 4

7 84 51 6

2 4



Global snapshot: Chandy and Lamport algorithm
• Marker send rule (Process i)

– Process i records its state
– On every outgoing channel where a marker has not been sent:

• i sends a marker on the channel 
• before sending any other message

• Marker receive rule (Process j receives marker on channel 
C)
– If j has not received the marker before

• Record state of j
• Record state of C as empty
• Follow marker send rule

– Else:
• Record the state of C as the set of messages received on C since 

recording j’s state and before receiving marker on C
• Algorithm stops when all processes have received marker 

on all incoming channels
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Complexity

• Message?
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Property
• If s1  (in p1) ⟶ s2 (in p2)
– Then s2 is before the cut ⟹ s1 is before the cut
– Suppose not & s1 is after the cut.

• Then p1 recorded its state before s1
• Consider the message m from p1 to p2

– This causes the relation s1⟶s2 to be true
• p1 must have recorded its state before sending m
• p1 must have sent marker to p2 before sending m

– By marker sending rule
• p2 must have received marker before m and before s2
• s2  must be after the cut – contradiction.
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Application of snapshots:
Detection of stable predicates

• Stable predicate:
– A property that once it becomes true, stays true (until 

detection and intervention)
– Eg: 

• Deadlocked : every process in some subset is waiting for another
• Terminated : once ended, computation remains stopped
• Loss of token : in mutual exclusion, process with token can access 

a resource. If token gets lost due to failure, it stays lost.
• Garbage : If no-one has a reference to a file, that file can be 

deleted
– So, if such a property was true before the snapshot, it is 

true in the snapshot, and can be detected by checking the 
snapshot
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Where snapshots are not useful:
non-stable predicates

• E.g. 
– Was this file opened at some time?
– Was x1-x2 < δ ever?

– Non-stable predicates may have happened, but 
then system state changes..
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Types of non-stable predicates

• Possibly B:
– B could have happened

• Definitely B:
– B definitely happened

• How can we check for definitely B and possibly 
B? 
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Collecting global states

• Each process notes its every state & vector 
timestamp
– Sends it to a server for recording
– Note: we do not need to save every time a state 

changes: only when it affects the predicates to be 
checked
• Assuming we know what predicates will be checked

• The server looks at these and tries to figure 
out if predicate B was possibly or definitely 
true
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Possible states

• Server checks for possible states: consistent 
cuts for B: x=y
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Note on difference with books
• We are using the following notation that may differ from books

– The circles are ‘states’, and bars are ‘events’
– We are concerned with which pairs of states form consistent cuts
– An event’s occurrence changes the state of the process
– We are following the convention that an event carries the label of the state in 

which it happened i.e. the label of the circle to the left of it.
• You can see this in the vector clock label carried by the messages

– Some books follow a different convention that the event (message) carries the 
label of the state after the event

– Sometimes the representation of the states are merged with the events
• This does not change any of the fundamental ideas or properties of 

causality or snapshots
– But labels in diagrams may look a little different

• In exam, you are allowed to use either convention if you are drawing a 
diagram. Mention which you are using.

• If a problem explicitly gives a diagram, it will use the convention in the 
slides, of separating states and events
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Possible states

• Server checks for possible states: consistent 
cuts for B: x=y
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Lattice of global states (consistent 
cuts)

• Any downward path 
from Initial state to 
final state is a valid 
execution
– A possible sequence 

of states that could 
have existed
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Lattice of global states (consistent 
cuts)

• Possibly B:
– B occurs on at least 

one downward path

• Definitely B
– B occurs on all 

downward paths
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Lattice of global states (consistent 
cuts)

• How do you compute 
possibly and 
definitely B?
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Lattice of global states (consistent 
cuts)

• Possibly B:
– B occurs on at least 

one downward path

• Do a BFS from start 
state
– If there is one state 

with B true, then 
possibly B is true
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Lattice of global states (consistent 
cuts)

• Definitely B
– B occurs on all downward 

paths

• Do a BFS from start state
– Do not visit nodes with B: 

true
– If BFS reaches final state 

and B is false in final state 
then Definitely B is false

– Else Definitely B is true
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What is the computational 
complexity?
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What is the computational 
complexity?

• Possibly exponential in number of processes
• Problem is NP-complete

• Observation: more messages reduces 
complexity!
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