
Distributed Systems

Global states and snapshots

Rik Sarkar
Edinburgh Spring 2020

University of Edinburgh

Distributed snapshots
• Take a “snapshot” of a system
• E.g. for backup: If system fails, it can start up from

a meaningful state

• Problem:
– Imagine a sky filled with birds. The sky is too large to

cover in a single picture.
– We want to take multiple pictures that are consistent

in a suitable sense
• Eg. We can correctly count the number of birds from the

snapshot

Distributed Systems, Edinburgh, 2020 2

Events and states

• Every process goes through alternate
sequence of states and events

• It is enough to count the states for correct
clock sequence

Distributed Systems, Edinburgh, 2020 3

p1

p2

2 3

1 3 4

7 84 51 6

2 4

Events and states

• Happened before and concurrent relations for
states are defined similarly

Distributed Systems, Edinburgh, 2020 4

p1

p2

2 3

1 3 4

7 84 51 6

2 4

Distributed snapshots
• Global state:
– State of all processes
– And state of all communication channels

• What message it is carrying

• Consistent cuts:
– A set of states of all processes is a consistent cut if:
– For any states s, t in the cut, s||t

• If a⟶b, then the following is not allowed:
– b is before the cut, a is after the cut

Distributed Systems, Edinburgh, 2020 5

Consistent cut

Distributed Systems, Edinburgh, 2020 6

Distributed snapshot algorithm

• Find a set of states: one for each process
– Ask each process to record its state

• The set of states must be a consistent cut

• Assumptions:
– Communication channels are FIFO
– Processes communicate only with neighbors
– (We assume for now that everyone is neighbor of

everyone)
– Processes do not fail

Distributed Systems, Edinburgh, 2020 7

Global snapshot: Chandy and Lamport
algorithm

• One process initiates snapshot and sends a
marker

• Marker is the boundary between “before” and
“after” the snapshot

Distributed Systems, Edinburgh, 2020 8

p1

p2

2 3

1 3 4

7 84 51 6

2 4

Global snapshot: Chandy and Lamport algorithm
• Marker send rule (Process i)

– Process i records its state
– On every outgoing channel where a marker has not been sent:

• i sends a marker on the channel
• before sending any other message

• Marker receive rule (Process j receives marker on channel
C)
– If j has not received the marker before

• Record state of j
• Record state of C as empty
• Follow marker send rule

– Else:
• Record the state of C as the set of messages received on C since

recording j’s state and before receiving marker on C
• Algorithm stops when all processes have received marker

on all incoming channels

Distributed Systems, Edinburgh, 2020 9

Complexity

• Message?

Distributed Systems, Edinburgh, 2020 10

Property
• If s1 (in p1) ⟶ s2 (in p2)
– Then s2 is before the cut ⟹ s1 is before the cut
– Suppose not & s1 is after the cut.

• Then p1 recorded its state before s1
• Consider the message m from p1 to p2

– This causes the relation s1⟶s2 to be true
• p1 must have recorded its state before sending m
• p1 must have sent marker to p2 before sending m

– By marker sending rule
• p2 must have received marker before m and before s2
• s2 must be after the cut – contradiction.

Distributed Systems, Edinburgh, 2020 11

Application of snapshots:
Detection of stable predicates

• Stable predicate:
– A property that once it becomes true, stays true (until

detection and intervention)
– Eg:

• Deadlocked : every process in some subset is waiting for another
• Terminated : once ended, computation remains stopped
• Loss of token : in mutual exclusion, process with token can access

a resource. If token gets lost due to failure, it stays lost.
• Garbage : If no-one has a reference to a file, that file can be

deleted
– So, if such a property was true before the snapshot, it is

true in the snapshot, and can be detected by checking the
snapshot

Distributed Systems, Edinburgh, 2020 12

Where snapshots are not useful:
non-stable predicates

• E.g.
– Was this file opened at some time?
– Was x1-x2 < δ ever?

– Non-stable predicates may have happened, but
then system state changes..

Distributed Systems, Edinburgh, 2020 13

Types of non-stable predicates

• Possibly B:
– B could have happened

• Definitely B:
– B definitely happened

• How can we check for definitely B and possibly
B?

Distributed Systems, Edinburgh, 2020 14

Collecting global states

• Each process notes its every state & vector
timestamp
– Sends it to a server for recording
– Note: we do not need to save every time a state

changes: only when it affects the predicates to be
checked
• Assuming we know what predicates will be checked

• The server looks at these and tries to figure
out if predicate B was possibly or definitely
true

Distributed Systems, Edinburgh, 2020 15

Possible states

• Server checks for possible states: consistent
cuts for B: x=y

Distributed Systems, Edinburgh, 2020 16

p1

p2

2,0 3,0

0,1 2,2 2,3

4,41,0

2,4
X = 1 X = 5X = 3

Y = 5 Y = 5

X = 5

Y = 3 Y = 4 Y = 7

Note on difference with books
• We are using the following notation that may differ from books

– The circles are ‘states’, and bars are ‘events’
– We are concerned with which pairs of states form consistent cuts
– An event’s occurrence changes the state of the process
– We are following the convention that an event carries the label of the state in

which it happened i.e. the label of the circle to the left of it.
• You can see this in the vector clock label carried by the messages

– Some books follow a different convention that the event (message) carries the
label of the state after the event

– Sometimes the representation of the states are merged with the events
• This does not change any of the fundamental ideas or properties of

causality or snapshots
– But labels in diagrams may look a little different

• In exam, you are allowed to use either convention if you are drawing a
diagram. Mention which you are using.

• If a problem explicitly gives a diagram, it will use the convention in the
slides, of separating states and events

Distributed Systems, Edinburgh, 2020 17

Possible states

• Server checks for possible states: consistent
cuts for B: x=y

Distributed Systems, Edinburgh, 2020 18

p1

p2

1,0 2,0

1,1 1,2

4,2

X = 1 X = 5X = 3

Y = 1 Y = 5

X = 9

Y = 3 Y = 7

S0,0

S1,0

0,0

0,0

S2,0

S2,1

S2,2

3,0

S3,0

S3,1

S3,2

1,3

S3,3

S4,3

S2,3

X = 5

Lattice of global states (consistent
cuts)

• Any downward path
from Initial state to
final state is a valid
execution
– A possible sequence

of states that could
have existed

Distributed Systems, Edinburgh, 2020 19

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Lattice of global states (consistent
cuts)

• Possibly B:
– B occurs on at least

one downward path

• Definitely B
– B occurs on all

downward paths

Distributed Systems, Edinburgh, 2020 20

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Lattice of global states (consistent
cuts)

• How do you compute
possibly and
definitely B?

Distributed Systems, Edinburgh, 2020 21

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Lattice of global states (consistent
cuts)

• Possibly B:
– B occurs on at least

one downward path

• Do a BFS from start
state
– If there is one state

with B true, then
possibly B is true

Distributed Systems, Edinburgh, 2020 22

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Lattice of global states (consistent
cuts)

• Definitely B
– B occurs on all downward

paths

• Do a BFS from start state
– Do not visit nodes with B:

true
– If BFS reaches final state

and B is false in final state
then Definitely B is false

– Else Definitely B is true

Distributed Systems, Edinburgh, 2020 23

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

What is the computational
complexity?

Distributed Systems, Edinburgh, 2020 24

What is the computational
complexity?

• Possibly exponential in number of processes
• Problem is NP-complete

• Observation: more messages reduces
complexity!

Distributed Systems, Edinburgh, 2020 25

