
Distributed Systems

Mobile & Sensor Computing
Rik Sarkar

University of Edinburgh
Fall 2020

Distributed Systems, Edinburgh, 2020

Mobile and Ubiquitous computing
• Devices (computers) are carried by people

(mobile)
– Laptops, phones, watches …

• They are everywhere
– Carried by people (mobile)
– Embedded in the environment

• Coffee machines, cameras, sensors for light control,
elevators…

– Produce large amounts of data
• Usage, sensing…

Distributed Systems, Edinburgh, 2020

Ubiquitous
• Advantages:

– There are computers everywhere
– Everything is “smart”
– Potentially use collaborative distributed computations on

these to make them even smarter

• Challenges:
– There are more things to go wrong
– Not easy to make things work well coherently
– Consistent platforms for managing ubiquitous devices do

not exist (yet)
– Devices do not interoperate easily

Distributed Systems, Edinburgh, 2020

Mobile
• Advantages:

– The same device is carried by the person – easy to give
consistent service

– Information whenever, wherever they need
– Devices have sensors – potential for sensing the

environment and adapting
• Disadvantages:

– Connectivity is challenge: data is costly; network does not
work the same way; mobility interferes with comunication

– Limited battery: can’t do too much communication
– How to make use of sensors, not so well understood

Distributed Systems, Edinburgh, 2020

Context aware computing

• Adapt computations to the circumstances
– Time of day
– Is the user present?
– Is the phone in hand or in pocket
– Scan for wifi only when indoors
– Turn off ring when in cinema, meeting…
– Recognize activity and bring up relevant

information
– …

Distributed Systems, Edinburgh, 2020

Context aware computing

• Adapt computations to the circumstances
• Basic contexts are easy to identify, but it is not

always clear how to adapt
– Turn down volume at night… but what if it is an

important call?
• Many contexts are very hard to detect reliably

Distributed Systems, Edinburgh, 2020

Context detection examples

• Detect if user is indoor or outdoor
• Use sound to detect user in a meeting
• Detect transport mode (walking, car, bus,

tram..)
– Using accelerometer

• Detect presence of other users nearby from
wifi activity

Distributed Systems, Edinburgh, 2020

Context detection

• Generally hard
• Concerns about privacy: you do not want to

send context information to a server
• Perhaps distributed computation can help

– Use data from many phones to detect context
– But again, do not want to send all data to server
– Do as much of it as possible on device –

filter/process data at source

Distributed Systems, Edinburgh, 2020

Networking in mobile systems

• Difficulty:
– The network graph changes
– A node is not always connected to the same router

• Example system: Mobile ad-hoc networks
– Ad-hoc: Unplanned
– Devices simply connect to nearby devices and route

packets
– Also applies to sensor networks

Distributed Systems, Edinburgh, 2020

Routing in ad hoc wireless networks

• Find route between pairs of nodes wishing to
communicate.

• Proactive protocols: maintain routing tables at
each node that is updated as changes in the
network topology are detected.

– Heavy overhead with high network dynamics (caused
by link/node failures or node movement).

– Not practical for networks that change frequently

Distributed Systems, Edinburgh, 2020

Routing in ad hoc wireless networks

• Reactive protocols: routes are constructed on
demand. No global routing table is maintained.

• More appropriate for networks with high rate of
changes

– Ad hoc on demand distance vector routing (AODV)
– Dynamic source routing (DSR)

Distributed Systems, Edinburgh, 2020

Dynamic Source Routing (DSR)

• Node S wants to send a message to node D
• S initiates a a route discovery
• S floods the network with route request

(RREQ) message
• Each node appends its own id to the message

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery in DSR

• Destination D on receiving the first RREQ
sends a route reply (RREP)

• RREP is sent on a route obtained by reversing
the route in received RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

Route Discovery: RREQ

Distributed Systems, Edinburgh, 2020

When

• When a link fails, an error message with the
link name is sent back to S.

• S deletes any route using that link and starts
discovery.

Distributed Systems, Edinburgh, 2020

Route caching
• When a node receives or forwards a message, it

learns routes to all nodes on the path
• Advantage:

– S may not need to send RREQ
– Intermediate node on receiving RREQ, can respond

with complete route
• Disadvantage:

– Caches may be stale: S tries many cached routes
before starting a discovery. Or, intermediate nodes
return outdated information.

Distributed Systems, Edinburgh, 2020

DSR: Summary
Advantages:
• Routes computed only when needed – good for changing

networks
• Caching can make things efficient
• Does not create loops
Disadvantages
• Entire route must be contained in message: can be long for

large networks
• Flooding causes communication to many nodes
• Stale caches can be a problem
• Not suitable for networks where changes are too frequent

Distributed Systems, Edinburgh, 2020

Ad hoc On-Demand Distance
Vector Routing (AODV)

• Maintains routing tables at nodes so that the
route need not be stored in the message

• No Caches: Only one route per destination

Distributed Systems, Edinburgh, 2020

AODV Route Discovery

• Source floods the network
Distributed Systems, Edinburgh, 2020

AODV Route Discovery

• Other nodes create parent pointer
• A node forwards a RREQ only once

Dst NxtHp Dist

S S 1

Dst NxtHp Dist

S 1 Dst NxtHp Dist

S S 1

Distributed Systems, Edinburgh, 2020

AODV Route Discovery

• Other nodes create parent pointer
• A node forwards a RREQ only once

Dst NxtHp Dist

S S 1

Dst NxtHp Dist

S E 2

Distributed Systems, Edinburgh, 2020

AODV Route Discovery

• RREP is forwarded via reverse path

Dst NxtHp Dist

S E 2

Dst NxtHp Dist

S S 1

Dst NxtHp Dist

S F 3

Distributed Systems, Edinburgh, 2020

AODV Route Discovery

• RREP is forwarded via reverse path
• Creates a forward path

Dst NxtHp Dist

S E 2

D D 1

Dst NxtHp Dist

S S 1

D F 2

Dst NxtHp Dist

S F 3

D D 0

Dst NxtHp Dist

S S 0

D E 3

Distributed Systems, Edinburgh, 2020

Route expiry

• A path expires if not used for a certain time.
• If a node sees that a routing table entry has

not been used by this time, it removes this
entry

• Even if the path itself is valid
• Good for networks with frequent changes
• Bad for static and stable networks

Distributed Systems, Edinburgh, 2020

Can create loops

• Assume C->D link has failed, but A does not
know because the ERR message was lost

• C is now trying to find path to D
• A responds since A thinks it has a path
• Creates loop: C-E-A-B-C

Distributed Systems, Edinburgh, 2020

Sequence numbers in AODV

• If A has a route to D, A keeps a sequence
number.

• A increments this number periodically: tells
how old the information is

Distributed Systems, Edinburgh, 2020

Using sequence numbers

• Rule : sequence number must increase along
any route

Distributed Systems, Edinburgh, 2020

Sequence number rule avoids loop

• A does not reply, since its sequence no. is less
than that of C

Distributed Systems, Edinburgh, 2020

AODV

• Routing tables, message does not contain
route

• Fresh routes preferred
• Old unused routes expire
• Stale routes less problematic
• Needs sequence numbers to prevent loops
• Better for more dynamic, changing

environments
Distributed Systems, Edinburgh, 2020

Routing in ad hoc networks

• Reactive protocols: routes are constructed on
demand. No global routing table is maintained.

• More appropriate for networks with high rate of
changes

– Ad hoc on demand distance vector routing (AODV)
– Dynamic source routing (DSR)

• Need flooding
– Inefficient in large networks

Distributed Systems, Edinburgh, 2020

Geographical routing: Using location

• Geographical routing uses a node’s
location to discover path to that node.

Distributed Systems, Edinburgh, 2020

x

y

Greedy Routing:
Forward to the neighbor that
is nearest to the destination

Geographical routing

• Assumptions:
– Nodes know their own geographical location
– Nodes know their 1-hop neighbors
– Routing destinations are specified

geographically (a location, or a geographical
region)

– Each packet can hold a small amount of
routing information.

Distributed Systems, Edinburgh, 2020

Sensor network

• Sensors enabled with wireless
– Can communicate with nearby sensors
– Communication to server relatively costly

• Low power, but lots of data
– Not worth sending everything to server

• Try use the data directly inside the network
– In-network distributed computing

Distributed Systems, Edinburgh, 2020

Problem: How to find the relevant
data?

• A tourist in a park asks
• “Where is the elephant?”
• Out of all the sensors/cameras which one is close

to an elephant?

Distributed Systems, Edinburgh, 2020

Data centric routing
• Traditional networks try to route to an IP address
• Find path to the node with a particular ID
• But what if we try to find data, not specific

nodes?
• After all, delivering data is the ultimate goal of

routing and networks
• Data centric storage

– Storage depends on the data (elephant, giraffe,song…)
• Data centric routing (search)

– Route to the data

Distributed Systems, Edinburgh, 2020

Distributed Database

• Information Producer
– Can be anywhere in the network
– May be mobile
– Many producers may generate data of the same

type
• User or Information Consumer

– Can be anywhere
– May be many

Distributed Systems, Edinburgh, 2020

Distributed Database: Challenges
• Consumer does not know where the producer is,

and vice versa
• Need to search : Must be fast, efficient

Basic methods:
• Push: Producer disseminates data (flood)
• Pull: Consumer looks for the data (flood the

query)
• Push-pull: Both producer, consumer search for

each-other

Distributed Systems, Edinburgh, 2020

Distributed hash tables

• Use a hash on the data: h(song1.mp3) =
node#26

• Anyone that has song1.mp3 informs node#26
• Anyone that needs Song1.mp3 checks with

node#26
• Used in peer to peer systems like Chord,

pastry etc

Distributed Systems, Edinburgh, 2020

Geographic Hash Tables
• Content based hash gives

coordinates:
– h(lion) = (12, 07)

• Producer sends msg
to (12, 07) by geographic
routing and stores data

• Consumer sends msg
to (12, 07) by geographic
routing and gets data

Distributed Systems, Edinburgh, 2020

GHT

• What if there is no sensor at (12, 07) ?

• Use the sensor nearest to it

Distributed Systems, Edinburgh, 2020

Fault handling

• What if home node a dies?
• Replicas have a timer that triggers a new check
• A new node becomes home

Distributed Systems, Edinburgh, 2020

GHT

• Advantages
– Simple
– Handles load balancing and faults

• Disadvantages
– Not distance sensitive: everyone has to go to hash

node even if producer and consumer are close
– If a data is queried or updated often, that node

has a lot of traffic – bottleneck

Distributed Systems, Edinburgh, 2020

Mobile, Ad-hoc and Sensor network

• A difficult model – least infrastructure, low power
nodes, communication/computation expensive

• Not entirely realistic
• However, it makes least number of assumptons

– useful as a basis for developing distributed
protocols/algorithms

– Which can then be enhanced using available
infrastructure in specific cases

Distributed Systems, Edinburgh, 2020

