Distributed Systems

Coloring and MIS

Rik Sarkar

University of Edinburgh Spring 2019

Coloring a graph

Assign a color to each vertex such that

 Neighboring vertices always have different colors

- Easy with n colors
- Problem is harder with fewer colors

Application of coloring

- Suppose there are restrictions such that certain pairs of nodes must not operate (or access a resource) at the same time
- A coloring gives us sets of nodes that can operate at the same time

Example

- Suppose we have a wireless network
- Nearby nodes should not transmit at the same frequency (channel) at the same time
- We can construct a graph where nodes within range of each-other are connected by an edge
- A coloring of this graph is an assignment of communication channels to nodes
 - Such that they will not interfere

Example

- Suppose we have a wireless network
- Nearby nodes should not transmit at the same frequency (channel) at the same time
- We can construct a graph where nodes within range of each-other are connected by an edge
- A coloring of this graph is an assignment of communication channels to nodes
 - Such that they will not interfere
- Alternatively, using time division access
 - A coloring is assignment of time slots

Independent set (IS)

- A subset of vertices that can have the same color
 - No two vertices are adjacent
 - In a coloring, vertices of each color form an IS

Maximum independent set (maxIS)

• Independent set of largest possible size

• NP-hard: polynomial time algorithm unlikely

Maximal IS (MIS)

Independent set such that

No other vertex can be added to the set

 MIS can have very few vertices compared to MaxIS

MIS algorithm (synchronous)

- Each vertex has states
 - Undecided (initial)
 - Decided to enter MIS
 - Decided not to enter MIS
- Algorithm (repeated at each node until a decision (enter or not enter)):
 - If a neighbor has decided to enter MIS
 - Decide not to enter
 - If some neighbors are undecided and one or more undecided neighbor has higher id
 - Stay undecided
 - If some neighbors are undecided and none has higher id
 - Decide to enter MIS

MIS algorithm

• Time complexity: O(n)

• When nodes are in a chain, sorted by id

MIS

• We want something faster that O(n)

Fast-MIS (randomized)

- d(v) is degree of v
- Each v marks itself with probability 1/2d(v)
- If no higher degree neighbor is marked
 - v joins MIS
 - Else v un-marks itself
- Remove all nodes that joined MIS and their neighbors

Fast-MIS

- Run time: O(log n)
- Proof : somewhat long.
- If you want to learn more, see:
 - Alon et al. 1986 : A fast and simple randomized parallel algorithm for the maximal independent set problem
 - Slides: http://www.net.t-labs.tuberlin.de/~stefan/netalg13-6-MIS.pdf