
Distributed Systems

Failure detection & Leader Election
Rik Sarkar

University of Edinburgh
Spring 2020

Failures
• How do we know that something has failed?
• Let’s see what we mean by failed:

• Models of failure:
1. Assume no failures
2. Crash failures: Process may fail/crash
3. Message failures: Messages may get dropped
4. Link failures: a communication link stops working
5. Some combinations of 2,3,4
6. More complex models can have recovery from failures
7. Arbitrary failures: computation/communication may be

erroneous

Distributed Systems, Edinburgh, 2020 2

Failure detectors

• Detection of a crashed process
– (not one working erroneously)

• A major challenge in distributed systems
• A failure detector is a process that responds to

questions asking whether a given process has
failed
– A failure detector is not necessarily accurate

Distributed Systems, Edinburgh, 2020 3

Failure detectors
• Reliable failure detectors

– Replies with “working” or “failed”

• Difficulty:
– Detecting something is working is easier: if they respond to a message, they

are working
– Detecting failure is harder: if they don’t respond to the message, the message

may hev been lost/delayed, may be the process is busy, etc..

• Unreliable failure detector
– Replies with “suspected (failed)” or “unsuspected”
– That is, does not try to give a confirmed answer

• We would ideally like reliable detectors, but unreliable ones (that say give
“maybe” answers) could be more realistic

Distributed Systems, Edinburgh, 2020 4

Simple example

• Suppose we know all messages are delivered
within D seconds

• Then we can require each process to send a
message every T seconds to the failure
detectors

• If a failure detector does not get a message
from process p in T+D seconds, it marks p as
“suspected” or “failed”

Distributed Systems, Edinburgh, 2020 5

Simple example

• Suppose we assume all messages are delivered
within D seconds

• Then we can require each process to send a
message every T seconds to the failure detectors

• If a failure detector does not get a message from
process p in T+D seconds, it marks p as
“suspected” or “failed” (depending on type of
detector)

Distributed Systems, Edinburgh, 2020 6

Synchronous vs asynchronous
• In a synchronous system there is a bound on message

delivery time (and clock drift)

• So this simple method gives a reliable failure detector

• In fact, it is possible to implement this simply as a
function:
– Send a message to process p, wait for 2D + ε time
– A dedicated detector process is not necessary

• In Asynchronous systems, things are much harder

Distributed Systems, Edinburgh, 2020 7

Simple failure detector

• If we choose T or D too large, then it will take
a long time for failure to be detected

• If we select T too small, it increases
communication costs and puts too much
burden on processes

• If we select D too small, then working
processes may get labeled as failed/suspected

Distributed Systems, Edinburgh, 2020 8

Assumptions and real world

• In reality, both synchronous and asynchronous
are a too rigid

• Real systems, are fast, but sometimes
messages can take a longer than usual
– But not indefinitely long

• Messages usually get delivered, but
sometimes not..

Distributed Systems, Edinburgh, 2020 9

Some more realistic failure detectors

• Have 2 values of D: D1, D2
– Mark processes as working, suspected, failed

• Use probabilities
– Instead of synchronous/asynchronous, model

delivery time as probability distribution
– We can learn the probability distribution of

message delivery time, and accordingly extimate
the probability of failure

Distributed Systems, Edinburgh, 2020 10

Using bayes rule
• a=probability that a process fails within time T
• b=probability a message is not received in T+D

• So, when we do not receive a message from a process
we want to estimate P(a|b)
– Probability of a, given that b has occurred

Distributed Systems, Edinburgh, 2020 11

P(a | b) = P(b | a)P(a)
P(b)

If process has failed, i.e. a is true, then of course message will not
be received! i.e. P(b|a) = 1. Therefore:

P(a | b) = P(a)
P(b)

Leader of a computation

• Many distributed computations need a
coordinating or server process
– E.g. Central server for mutual exclusion
– Initiating a distributed computation
– Computing the sum/max using aggregation tree

• We may need to elect a leader at the start of
computation

• We may need to elect a new leader if the
current leader of the computation fails

Distributed Systems, Edinburgh, 2020 12

The Distinguished leader

• The leader must have a special property that
other nodes do not have

• If all nodes are exactly identical in every way
then there is no algorithm to identify one as
leader

• Our policy:
– The node with highest identifier is leader

Distributed Systems, Edinburgh, 2020 13

Ref: NL

Node with highest identifier
• If all nodes know the highest identifier (say n), we do not

need an election
– Everyone assumes n is leader
– n starts operating as leader

• But what if n fails? We cannot assume n-1 is leader, since n-
1 may have failed too! Or may be there never was process
n-1

• Our policy:
– The node with highest identifier and still surviving is the leader

• We need an algorithm that finds the working node with
highest identifier

Distributed Systems, Edinburgh, 2020 14

Strategy 1: Use aggregation tree

Distributed Systems, Edinburgh, 2020 15

5

2 8

7

3

2

r = 4

2

5

7

8 3

8

• Suppose node r detects that leader has
failed, and initiates leader election

• Node r creates a BFS tree

• Asks for max node id to be computed via
aggregation
– Each node receives id values from children
– Each node computes max of own id and

received values, and forwards to parent

• Needs a tree construction
• If n nodes start election, will need n trees

– O(n2)communication
– O(n) storage per node

Strategy 1: Use aggregation tree
• Suppose node r detects that leader has

failed, and initiates leader election

• Node r creates a BFS tree

• Asks for max node id to be computed via
aggregation
– Each node receives id values from children
– Each node computes max of own id and

received values, and forwards to parent

• Needs a tree construction
• If n nodes start election, will need n trees

– O(n2)communication
– O(n) storage per node

Distributed Systems, Edinburgh, 2020 16

5

2 8

7

3

2

r = 4

2

5

7

8 3

8

Strategy 2: Use a ring

• Suppose the network is a
ring
– We assume that each node

has 2 pointers to nodes it
knows about:
• Next
• Previous
• (like a circular doubly linked

list)
– The actual network may not

be a ring
– This can be an overlay

Distributed Systems, Edinburgh, 2020 17

6

2

4
5

3

8

Strategy 2: Use a ring

• Basic idea:
– Suppose 6 starts election
– Send “6” to 6.next, i.e. 2
– 2 takes max(2, 6), send to

2.next
– 8 takes max(8,6), sends to

8.next
– etc

Distributed Systems, Edinburgh, 2020 18

6

2

4
5

3

8

next

previous

6

6

8

8

8

Strategy 2: Use a ring

• The value “8” goes around the
ring and comes back to 8

• Then 8 knows that “8” is the
highest id
– Since if there was a higher id,

that would have stopped 8

• 8 declares itself the leader:
sends a message around the
ring

Distributed Systems, Edinburgh, 2020 19

6

2

4
5

3

8

next

previous

6

6

8

8

8

8

Strategy 2: Use a ring

• The problem: What if
multiple nodes start leader
election at the same time?

• We need to adapt
algorithm slightly so that it
can work whenever a
leader is needed, and
works for multiple leader

Distributed Systems, Edinburgh, 2020 20

6

2

4
5

3

8

next

previous

6

6

8

8

8

8

Strategy 2: Use a ring
(Algorithm by chang and roberts)

• Every node has a default
state: non-participant

• Starting node sets state to
participant and sends
election message with id
to next

Distributed Systems, Edinburgh, 2020 21

6

2

4
5

3

8

next

previous

6

6

8

8

8

8

Strategy 2: Use a ring
(Algorithm by chang and roberts)

• If node p receives election
message m

• If p is non-partcipant:
– send max(m.id, p.id) to p.next
– Set state to participant

• If p is participant:
– If m.id > p.id:

• Send m.id to p.next
– If m.id < p.id:

• do nothing

Distributed Systems, Edinburgh, 2020 22

6

2

4
5

3

8

next

previous

6

6

8

8

8

8

Strategy 2: Use a ring
(Algorithm by chang and roberts)

• If node p receives election message m with
m.id = p.id

• P declares itself leader
– Sets p.leader = p.id
– Sends leader message with p.id to p.next
– Any other node q receiving the leader message
• Sets q.leader = p.id
• Forwards leader message to q.next

Distributed Systems, Edinburgh, 2020 23

Strategy 2: Use a ring
(Algorithm by chang and roberts)

• Works in an asynchronous system
• Assuming nothing fails while the algorithm is executing

• Message complexity O(n^2)
– When does this occur?
– (hint: all nodes start election, and many messages traverse

a long distance)

• What is the time complexity?
• What is the storage complexity?

Distributed Systems, Edinburgh, 2020 24

Strategy 3: Use a ring – smartly

(Hirschberg Sinclair)

• Assume all nodes want to know the leader

• k-neighborhood of node p

– The set of all nodes within distance k of p

• How does p send a message to distance k?

– Message has a “time to live variable”

– Each node decrements m.ttl on receiving

– If m.ttl=0, don’t forward any more

Distributed Systems, Edinburgh, 2020 25

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• Basic idea:
– Check growing regions around yourself for

someone with larger id

Distributed Systems, Edinburgh, 2020 26

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• Algorithm operates in phases
• In phase 0, node p sends election message m to

both p.next and p.previous with:
– m.id = p.id and ttl = 1

• Suppose q receives this message
– Sets m.ttl=0
– If q.id > m.id:

• Do nothing
– If q.id < m.id:

• Return message to p

Distributed Systems, Edinburgh, 2020 27

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• Algorithm operates in phases
• In phase 0, node p sends election message m to both

p.next and p.previous with:
– m.id = p.id and ttl = 1

• Suppose q receives this message
– Sets m.ttl=0
– If q.id > m.id:

• Do nothing
– If q.id < m.id:

• Return message to p

• If p gets back both message, it decides itself leader of its 1-
neighborhood, and proceeds to next phase

Distributed Systems, Edinburgh, 2020 28

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• If p is In phase i, node p sends election message m to p.next
and p.previous with:
– m.id = p.id, and m.ttl = 2i

• A node q on receiving the message (from next/previous)
– If m.ttl=0: forward suitably to previous/next
– Sets m.ttl=m.ttl-1
– If q.id > m.id:

• Do nothing
– Else:

• If m.ttl = 0: return to sending process
• Else forward to suitably to previous/next

• If p gets both message back, it is the leader of its 2i

neighborhood, and proceeds to phase i+1
Distributed Systems, Edinburgh, 2020 29

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• When 2i >= n/2
– Only 1 process survives: Leader

• Number of phases: O(log n)

• What is the message complexity?

Distributed Systems, Edinburgh, 2020 30

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

In phase i
• At most one node initiates message in any

sequence of 2i-1 nodes
• So, n/2i-1 candidates
– Each sends 2 messages, going at most 2i distance, and

returning: 2*2*2i messages
• O(n) messages in phase i

There are O(log n) phases
• Total of O(n log n) messages

31Distributed Systems, Edinburgh, 2020

Strategy 3: Use a ring – smartly
(Hirschberg Sinclair)

• Assume synchronous operation
• Assume nodes do not fail during algorithm run

• What is time complexity?
• What is storage complexity?

32Distributed Systems, Edinburgh, 2020

Strategy 4: Bully Algorithm
• Assume:

– Each node knows the id of all nodes in the system (some may have failed)
– Synchronous operation

• Node p decides to initiate election
• p sends election message to all nodes with id > p.id
• If p does not hear “I am alive message” from any node, p broadcasts a

message declaring itself as leader
• Any working node q that receives election message from p, replies with

own id and “I am alive” message
– And starts an election (unless it is already in the process of an election)

• Any node q that hears a lower id node being declared leader, starts a new
election

Distributed Systems, Edinburgh, 2020 33

Ref: CDK

Strategy 4: Bully Algorithm

• Assume:
– Each node knows the id of all nodes in the system

(some may have failed)
– Synchronous operation

• Works even when processes fail
• Works when (some) message deliveries fail.

• What are the storage and message complexities?

Distributed Systems, Edinburgh, 2020 34

