
Distributed	Systems	
	

Clocks,	Ordering	of	events	

Rik	Sarkar	
Edinburgh	Spring	2018	

	

Logical	clocks	

•  Why	do	we	need	clocks?	
– To	know	when	something	happened	
– To	determine	when	one	thing	happened	before	
another	

•  Can	we	determine	that	without	using	a	
“clock”	at	all?	
– Then	we	don’t	need	to	worry	about	
synchronizaKon,	millisecond	errors	etc..	

2	

Happened	before	

•  a⟶b	:	a	happened	before	b	
–  If	a	and	b	are	successive	events	in	same	process	
then	a⟶b	

– Send	before	receive	
•  If	a	:	“send”	event	of	message	m	
•  And	b	:	“receive”	event	of	message	m	
•  Then	a⟶b	

– TransiKve:	a⟶b	and	b⟶c	⟹a⟶c	

3	

Events	
•  “Happened	before”	can	be	defined	between	
events	

•  Examples	of	event:	
–  Sent	message	
–  Received	message	
–  Started/finished	computaKon	
–  Received	input		
–  ..	Etc..	
– We	can	decide	which	events	are	important	to	us	

•  Events	in	a	process	are	ordered	by	Kme/causality	

4	

States	
•  “Happened	before”	can	be	defined	between	
states	

•  A	“state”	can	be	seen	as	the	values	in	all	memory	
and	registers	of	a	computer	
–  Changes	all	the	Kme	

•  More	useful:	State	changes	when	something	
important	to	us	has	happened	

•  E.g.	an	event	we	care	about.	
•  States	in	a	process	are	also	ordered	by	Kme/
causality	

	 		

5	

Ordering	among	events	in	different	
processes	

•  There	is	a	directed	path:	

6	

e1	 e2	

e3	

e5	e4	

p1	

p2	

p3	

•  Events	without	a	happened	before	relaKon	
are	“concurrent”	

•  e1⟶e2,	e3⟶e4,e1⟶e5,	e5||e2		

7	

e1	 e2	

e3	

e5	e4	

p1	

p2	

p3	

•  Events	without	a	happened	before	relaKon	
are	“concurrent”	

•  Happened	before	is	a	parKal	ordering	

8	

e1	 e2	

e3	

e5	e4	

p1	

p2	

p3	

Happened	before	&	causal	order	

•  Happened	before	==	could	have	caused/
influenced	

•  Preserves	causal	relaKons	
•  Implies	a	parKal	order	
–  Implies	Kme	ordering	between	certain	pairs	of	
events	

– Does	not	imply	anything	about	ordering	between	
concurrent	events	

9	

Logical	clocks	

•  Idea:	Use	a	counter	at	each	process	
•  Increment	aber	each	event		
•  Can	also	increment	when	there	are	no	events	
–  Eg.	A	clock	

•  An	actual	clock	can	be	thought	of	as	such	an	
event	counter	

•  It	counts	the	states/events	of	the	process	
•  Each	event	has	an	associated	Kme:	The	count	of	
the	state	when	the	event	happened	

10	

Lamport	clocks	

•  Keep	a	logical	clock	(counter)	
•  Send	it	with	every	message	
•  On	receiving	a	message,	set	own	clock	to			
max({own	counter,	message	counter})	+	1	

•  For	any	event	e,	write	c(e)	for	the	logical	Kme	
•  Property:		
–  If	a⟶b,	then	c(a)	<	c(b)	
–  If	a	||	b,	then	no	guarantees	

11	

Lamport	clocks:	example	

12	

e1	

e3	

e5	e4	

p1	

p2	

p3	

2	 3	

2	
1	 3	 6	

9	 10	4	 5	

State	

event	

Concurrency	and	lamport	clocks	

•  If	e1⟶e2	
– Then	no	Lamport	clock	C	exists	with	C(e1)==	C(e2)	

13	

Concurrency	and	lamport	clocks	

•  If	e1⟶e2	
– Then	no	Lamport	clock	C	exists	with	C(e1)==	C(e2)	

•  If	e1||e2,	then	there	exists	a	Lamport	clock	C	
such	that	C(e1)==	C(e2)	

14	

The	purpose	of	Lamport	clocks	

15	

The	purpose	of	Lamport	clocks	

•  If	a⟶b,	then	c(a)	<	c(b)	

•  If	we	order	all	events	by	their	Lamport	clock	
Kmes	
– We	get	a	parKal	order,	since	some	events	have	
same	Kme	

– The	parKal	order	saKsfies	“causal	relaKons”	

16	

The	purpose	of	Lamport	clocks	

•  Suppose	there	are	events	in	different	
machines	
– TransacKons,	money	in/out,	file	read,	write,	copy	

•  An	ordering	of	events	that	guarantees	
preserving	causality	

17	

Total	order	from	lamport	clocks	

•  If	event	e	occurs	in	process	j	at	Kme	C(e)	
– Give	it	a	Kme	(C(e),	j)	
– Order	events	by	(C,	process	id)	
– For	events	e1	in	process	i,	e2	in	process	j:	
•  If	C(e1)<C(e2),	then	e1<e2	
•  Else	if	C(e1)==C(e2)	and	i<j,	then	e1<e2	

•  Leslie	Lamport.	Time,	clocks	and	ordering	of	
events	in	a	distributed	system.		

18	

Logical	clocks	
•  Formally,	a	map:		
•  C:S	->	N	

–  That	saKsfy	happened	before	relaKon	
–  Where	S	is	set	of	states,	N	is	natural	numbers	
–  EssenKally,	Assign	a	“number”	to	each	state	
–  Other	sets	(like	Integers	Z)	work	equally	well.	As	long	as	the	set	
has	a	total	order.		

	
•  Problem:	

–  Ordering	preserves	happened-before	
–  But	does	not	imply	happened-before	
–  There	is	no	way	to	tell	from	logical	clock	if	there	can	be	
causality.	
•  The	relaKon	is	not	an	if	and	only	if	

19	

Vector	clocks	

•  We	want	a	clock	such	that:	
–  If	a⟶b,	then	c(a)	<	c(b)	
– AND	
–  If	c(a)	<	c(b),	then	a⟶b	

– Ref:	Coulouris	et	al.,		V.	Garg	

20	

Vector	clocks	
•  V:	S	->	Nn	
– Where	n	is	the	number	of	processes	

•  And:	
–  For	states	x	and	y	
–  Vx	≤		Vy		iff	for	each	i	in	{1,2,…n},	Vx[i]	≤		Vy[i]	
–  The	strict	inequality	is	defined	as:	

•  Vx	<	Vy		iff	for	each	i	in	{1,2,…n},	Vx[i]	≤		Vy[i]	
•  And	there	is	a	j	such	that	Vx[j]	<		Vy[j]	

•  That	saKsfy	that	
–  Vx	<	Vy	iff	x	⟶	y	

21	

Vector	clock	algorithm	

•  Each	process	i	maintains	a	vector	Vi	
•  Vi	has	n	elements	
– keeps	clock	Vi[j]	for	every	other	process	j	
– On	every	local	event:	Vi[i]	=Vi[i]+1	
– On	sending	a	message,	i	sends	enKre	Vi	
– On	receiving	a	message	at	process	j:	
•  Takes	max	element	by	element	
•  Vj[k]	=	max(Vj[k],	Vi[k]),	for	k	=	1,2,…,n	
•  And	adds	1	to	Vj[j]	

22	

23	

Comparing	Kmestamps	

•  V	=	V’	iff	V[i]	==	V’[i]	for	i=1,2,…,n	
•  V	≤	V’	iff	V[i]	≤	V’[i]	for	i=1,2,…,n	
•  V	<	V’	iff	V[i]	≤	V’[i]	for	i=1,2,…,n	
– And	there	is	an	i	such	that	V[i]	<	V’[i]	

24	

Comparing	Kmestamps	

•  V	=	V’	iff	V[i]	==	V’[i]	for	i=1,2,…,n	
•  V	<	V’	iff	V[i]		<	V’[i]	for	i=1,2,…,n	

•  For	events	a,	b	and	vector	clock	V	
– a⟶b	iff		Va<	Vb	

•  Is	this	a	total	order?	

25	

Comparing	Kmestamps	

•  V	=	V’	iff	V[i]	==	V’[i]	for	i=1,2,…,n	
•  V	≤	V’	iff	V[i]		≤	V’[i]	for	i=1,2,…,n	

•  For	events	a,	b	and	vector	clock	V	
– a⟶b	iff		Va	<	Vb	

•  Two	events	are	concurrent	if		
– Neither	Va<	Vb	nor	Vb<	Va	

26	

Vector	clock	examples	

•  (1,2,1)	≤	(3,2,1)	but	(1,2,1)					(3,1,2)	

•  Also	(3,1,2)					(1,2,1)		
•  No	ordering	exists	

27	

Vector	clocks	

•  What	are	the	drawbacks?	

•  What	is	the	communicaKon	complexity?	

28	

Vector	clocks	

•  What	are	the	drawbacks?	
– EnKre	vector	is	sent	with	message	
– All	vector	elements	(n)	have	to	be	checked	on	
every	message	

•  What	is	the	communicaKon	complexity?	
– Ω(n)	per	message	

29	

Logical	and	vector	clocks	

•  There	is	no	way	to	have	perfect	knowledge	on	
ordering	of	events	
– A	“true”	ordering	may	not	exist..	

– Logical	and	vector	clocks	give	us	a	way	to	have	
ordering	consistent	with	causality	

30	

