Distributed Systems

Clocks, Ordering of events

Rik Sarkar
Edinburgh Spring 2018

Logical clocks

* Why do we need clocks?
— To know when something happened

— To determine when one thing happened before
another

 Can we determine that without using a
“clock” at all?

— Then we don’t need to worry about
synchronization, millisecond errors etc..

Happened before

e a—b :a happened before b

— If a and b are successive events in same process
then a—b

— Send before receive
* If a: “send” event of message m
* And b : “receive” event of message m
* Thena—b

— Transitive: a—b and b—c =a—c

Events

“Happened before” can be defined between
events

Examples of event:

— Sent message

— Received message

— Started/finished computation

— Received input

— .. Etc..

— We can decide which events are important to us

Events in a process are ordered by time/causality

States

“Happened before” can be defined between
states

A “state” can be seen as the values in all memory
and registers of a computer

— Changes all the time

More useful: State changes when something
important to us has happened

E.g. an event we care about.

States in a process are also ordered by time/
causality

Ordering among events in different
processes

* There is a directed path:

el e2
’ ﬂ\% |
' —>
p2 .
N \
]

3 —>
P elll e5

* Events without a happened before relation
are “concurrent”

e el—e2, e3—ed,el—e5,e5]||e2

el el

CNA
3X\

3 —>
P ed e5

* Events without a happened before relation
are “concurrent”

 Happened before is a partial ordering

el el

CNA
3X\

3 —>
P ed e5

Happened before & causal order

* Happened before == could have caused/
influenced

* Preserves causal relations
* Implies a partial order

— Implies time ordering between certain pairs of
events

— Does not imply anything about ordering between
concurrent events

Logical clocks

ldea: Use a counter at each process
Increment after each event

Can also increment when there are no events
— Eg. A clock

An actual clock can be thought of as such an
event counter

It counts the states/events of the process

Each event has an associated time: The count of
the state when the event happened

Lamport clocks

Keep a logical clock (counter)
Send it with every message

On receiving a message, set own clock to
max({own counter, message counter}) + 1

For any event e, write c(e) for the logical time
Property:

— If a—b, then c(a) < c(b)

—Ifa || b, then no guarantees

Lamport clocks: example

@ State

| event

Concurrency and lamport clocks

e [fel—e2
— Then no Lamport clock C exists with C(el)== C(e2)

Concurrency and lamport clocks

e [fel—e2
— Then no Lamport clock C exists with C(el)== C(e2)

* |Ifel]||e2, then there exists a Lamport clock C
such that C(el)== C(e2)

The purpose of Lamport clocks

The purpose of Lamport clocks

e |fa—b, then c(a) < c(b)
* |f we order all events by their Lamport clock
times
— We get a partial order, since some events have
same time
— The partial order satisfies “causal relations”

The purpose of Lamport clocks

* Suppose there are events in different
machines

— Transactions, money in/out, file read, write, copy

* An ordering of events that guarantees
preserving causality

Total order from lamport clocks

* |f event e occurs in process j at time C(e)
— Give it a time (C(e), j)
— Order events by (C, process id)

— For events el in process i, e2 in process j:
* If C(el)<C(e2), then el<e?
* Else if C(e1)==C(e2) and i<j, then el<e2

* Leslie Lamport. Time, clocks and ordering of
events in a distributed system.

Logical clocks

* Formally, a map:

* CS->N
— That satisfy happened before relation
— Where S is set of states, N is natural numbers
— Essentially, Assign a “number” to each state

— Other sets (like Integers Z) work equally well. As long as the set
has a total order.

* Problem:
— Ordering preserves happened-before
— But does not imply happened-before

— There is no way to tell from logical clock if there can be
causality.

* The relationis not an if and only if

Vector clocks

 We want a clock such that:
— If a—b, then c(a) < c(b)
— AND
— If c(a) < c(b), then a—b

— Ref: Coulouris et al., V. Garg

Vector clocks

e V:S->N"
— Where n is the number of processes

* And:
— For states x and y
-V, SV, iff for eachiin {1,2,...n}, V [i] < Vy[i]
— The strict inequality is defined as:
* V, <V, iff foreachiin{1,2,..n}, V,[i] < V[i]
* And thereis ajsuch that V [j] < V [j]

* That satisfy that
=V, <V, iffx —y

Vector clock algorithm

* Each process i maintains a vector V,

* V. has n elements
— keeps clock V [j] for every other process j
— On every local event: V/[i] =V [i]+1
— On sending a message, i sends entire V.

— On receiving a message at process j:
* Takes max element by element
* Vi[k] = max(V;[k], V;[k]), for k =1,2,...,n
* And adds 1 to V|[j]

Time

23

Comparing timestamps

V=V iff V][i] == V’[i] fori=1,2,...,n
e VSV iff V]i] £V'[i] fori=1,2,...,n
e V<V iff V[i] £V'[i] fori=]1,2,...,n

— And there is an i such that V[i] < V'[i]

Comparing timestamps

V =V iff V[i] == V’[i] for i=1,2,...,n
V <V iff V[i] < V'[i] fori=1,2,...,n

For events a, b and vector clock V
—a—b iff V<V,

Is this a total order?

Comparing timestamps

V=V iff V][i] == V’[i] fori=1,2,...,n
VIV iff V[i] £V'[i] fori=1,2,...,n

 For events a, b and vector clock V
—a—biff V<V,

* Two events are concurrent if
— Neither V<V norV, <V,

Vector clock examples

* (1,2,1) <(3,2,1) but (1,2,1) £ (3,1,2)

* Also(3,1,2) £(1,2,1)
* No ordering exists

Vector clocks

* What are the drawbacks?

 What is the communication complexity?

Vector clocks

* What are the drawbacks?

— Entire vector is sent with message

— All vector elements (n) have to be checked on
every message

 What is the communication complexity?

— Q(n) per message

Logical and vector clocks

* There is no way to have perfect knowledge on
ordering of events

— A “true” ordering may not exist..

— Logical and vector clocks give us a way to have
ordering consistent with causality

