
Distributed	Systems	
	

Time,	clocks,	and	Ordering	of	events	
Rik	Sarkar	

	
University	of	Edinburgh	

Spring	2018	



Notes	

	

•  Today:		
•  Time,	clocks,	NTP	
– Ref:	CDK	

•  Causality,	ordering,	logical	clocks:	
– Ref:	VG,	CDK	

	

Distributed	Systems,	Edinburgh,	2018	



Time	

•  Ordering	of	events	are	important:	
– Which	happened	first	

•  Need	synchronizaMon	between	sender	and	
receiver	

•  Which	event	happened	when	
•  CoordinaMon	of	joint	acMvity	
•  Etc..	

Distributed	Systems,	Edinburgh,	2018	



UTC	

•  UTC		
– Coordinated	universal	Mme	
– Time	maintained	for	civil	use	(on	atomic	clock)	
– Kept	within	0.9	seconds	of	exact	mean	Mme	for	
Greenwich		

Distributed	Systems,	Edinburgh,	2018	



Clocks	

•  Piezoelectric	effect:		
– Squeeze	a	quartz	crystal:	generates	electric	field	
– Apply	electric	field:	crystal	bends:	

•  Quartz	crystal	clock:	
– ResonaMon	like	a	tuning	fork	
– Accurate	to	parts	per	million	
– Gain/lose	½	second	per	day	

Distributed	Systems,	Edinburgh,	2018	



Challenges	
•  Two	clocks	do	not	agree	perfectly	

•  Skew:	The	Mme	difference	between	two	clocks	

•  Quartz	oscillators	vibrate	at	different	rates	

•  Dri):	The	difference	in	rates	of	two	clocks	

•  If	we	had	two	perfect	clocks	

Distributed	Systems,	Edinburgh,	2018	



Challenges	
•  Two	clocks	do	not	agree	perfectly	

•  Skew:	The	Mme	difference	between	two	clocks	

•  Quartz	oscillators	vibrate	at	different	rates	

•  Dri):	The	difference	in	rates	of	two	clocks	

•  If	we	had	two	perfect	clocks	
–  Skew	=	0	
–  Dri]	=	0	

Distributed	Systems,	Edinburgh,	2018	



When	we	detect	one	clock	has	a	skew	

•  Eg:	it	is	5	seconds	behind	
•  Or	5	seconds	ahead	

•  What	can	we	do?	

Distributed	Systems,	Edinburgh,	2018	



When	we	detect	a	clock	has	a	skew	

•  Eg:	it	is	5	seconds	behind	
– We	can	advance	it	5	seconds	to	correct	

•  Or	5	seconds	ahead	
– Pushing	back	5	seconds	is	a	bad	idea	
•  Message	was	received	before	it	was	sent	
•  Document	closed	before	it	was	saved	etc..	

– We	want	monotonicity:	Mme	always	increases	

Distributed	Systems,	Edinburgh,	2018	



When	we	detect	a	clock	has	a	skew	

•  SoluMon:	Adjust	slowly,	maintaining	
monotonicity		

•  Eg:	it	is	behind	
– Run	it	faster	unMl	it	catches	up	

•  It	is	ahead	
– Run	it	slower	unMl	it	catches	up	

•  This	does	not	guarantee	correct	clock	in	future	
– Need	to	check	and	adjust	periodically	

Distributed	Systems,	Edinburgh,	2018	



How	clocks	synchronize	

•  Obtain	Mme	from	Mme	server:	

Distributed	Systems,	Edinburgh,	2018	

Client	 Server	

Request	Mme	

Time	:	00:05:20	



How	clocks	synchronize	

•  Obtain	Mme	from	Mme	server:	

•  Time	is	inaccurate	
– Delays	in	message	transmission	
– Delays	due	to	processing	Mme	
–  Server’s	Mme	may	be	inaccurate	

Distributed	Systems,	Edinburgh,	2018	

Client	 Server	

Request	Mme	

Time	:	00:05:20	



ChrisMan’s	algorithm	
•  Compensate	for	delays	
– Request	sent	at	T0	
– Reply	received	at	T1	

– Assume	delays	are	symmetric	

Distributed	Systems,	Edinburgh,	2018	

Tserver	

Request	
Reply	

T0	 T1	



ChrisMan’s	algorithm	

Distributed	Systems,	Edinburgh,	2018	

Tserver	

Request	
Reply	

T0	 T1	

Tnew	=	Tserver+	(T1	–	T0)/2	



ChrisMan’s	algorithm	

Distributed	Systems,	Edinburgh,	2018	

Tserver	

Request	
Reply	

T0	 T1	

Tnew	=	Tserver+	(T1	–	T0)/2	
	
Example:	T0	=	5:05:08.100,	T1	=	5:05:9.500,	Tserver=	5:05:9.100	
Tnew	=	5:05:09:800	



ChrisMan’s	algorithm	

Distributed	Systems,	Edinburgh,	2018	

•  If	minimum	message	transit	Mme	Tmin	is	known	
•  Range	=	T1	–	T0	-	2Tmin	

•  Accuracy	of	result:	(T1	–	T0	-	2Tmin)/2	
Tserver	

Request	
Reply	

T0	 T1	

Tmin	 Tmin	



ChrisMan’s	algorithm	

Distributed	Systems,	Edinburgh,	2018	

•  If	minimum	message	transit	Mme	Tmin	is	known	
•  Range	=	T1	–	T0	-	2Tmin	

•  Accuracy	of	result:	(T1	–	T0	-	2Tmin)/2	
Tserver	

Request	
Reply	

T0	 T1	

Tmin	 Tmin	



Berkeley	algorithm	

•  Assumes	no	machine	has	perfect	Mme	
•  Takes	average	of	parMcipaMng	computers	
•  Sync	all	clocks	to	average	

Distributed	Systems,	Edinburgh,	2018	



Berkeley	algorithm	

•  One	computer	is	elected	as	server	(master)	
– Others	are	slaves	

•  Master	polls	each	machine	for	Mme	
•  Compute	average	
–  Idea	average	will	cancel	out	skews	

•  Send	each	clock	the	offset	by	which	it	needs	
to	adjust	Mme	

Distributed	Systems,	Edinburgh,	2018	



Berkeley	algorithm	

•  One	computer	is	elected	as	server	(master)	
– Others	are	slaves	

•  Master	polls	each	machine	for	Mme	
•  Compute	average	
–  Idea	average	will	cancel	out	skews	

•  Send	each	clock	the	offset	by	which	it	needs	
to	adjust	Mme	
– Sending	Mme	itself	is	suscepMble	to	network	
delays	

Distributed	Systems,	Edinburgh,	2018	



Berkeley	algorithm	

•  Fault	tolerance	
–  Ignore	readings	of	clocks	with	too	large	skews	

–  If	master	fails:	run	an	elecMon	algorithm	and	a	
slave	becomes	master	

Distributed	Systems,	Edinburgh,	2018	



Network	Mme	protocol	

•  Enable	clients	to	synchronize	to	UTC	with	
reasonable	accuracy	

•  Reliable:		
– Redundant	servers	and	paths	

•  Scalable:	
– Enable	many	clients	to	synchronize	frequently	

•  Security	
– AuthenMcate	sources	

Distributed	Systems,	Edinburgh,	2018	



Network	Mme	protocol	

•  Servers	in	strata	
•  1:	directly	connected	to	
atomic,	GPS	etc	clock	
– May	inter-communicate	for	
cross	checks	

•  2:	few	microseconds	of	
level	1	etc	

Distributed	Systems,	Edinburgh,	2018	



Network	Mme	protocol	

•  Uses	mulMple	rounds	of	
messages	to	get	beher	Mme	

•  Large	number	of	servers	

•  Uses	an	MST	for	inter-
server	sync	

Distributed	Systems,	Edinburgh,	2018	



Time	and	synchronizaMon	

•  Important	topic	in	distributed	systems	
•  Many	different	methods	
– Depending	on	systems,	requirements…	

•  No	perfect	soluMon	

Distributed	Systems,	Edinburgh,	2018	



Special	relaMvity	

•  Light	cone:	

Distributed	Systems,	Edinburgh,	2018	

e	

Things	that	could	have		
caused/influenced	e	

Things	that	e	can	have		
cause/influence	



GPS	
•  Satellites:	Have	very	accurate	atomic	clocks	
•  Transmit	signals:	“satID,	Mme	T0,…”	
•  Receivers	measure	distance:	
–  (T1	–	T0)*c			[c	=	speed	of	light]	
–  Distance	from	mulMple	satellites	gives	locaMon	
–  Complex	computaMon,	taking	into	account	possible	errors,	
clock	dri]	and	skew	etc..	

•  Needs	relaMvisMc	computaMon	
–  Special	relaMvity:	Clocks	on	fast	moving	satellites	run	slow	
(microseconds	per	day	dri]	for	satellites)	

–  General	relaMvity:	Clocks	far	from	heavy	bodies	run	fast	
(microseconds	per	day)	

Distributed	Systems,	Edinburgh,	2018	


